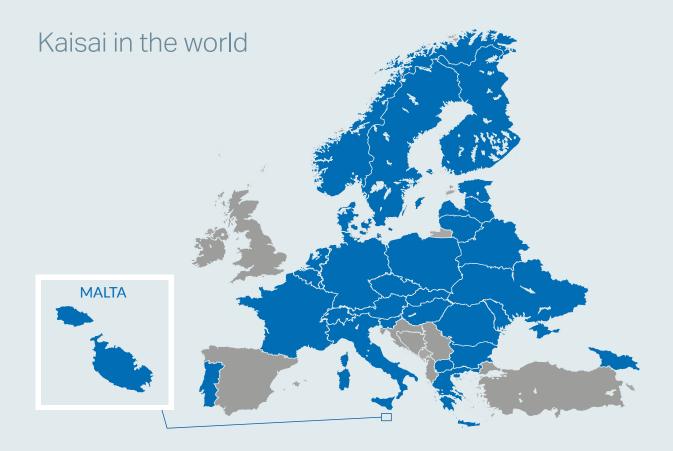


product catalog

2020 / 2021

About Kaisai brand	4
Learn about Kaisai technology: User guide	7
Air conditioning selection	8
Heat pumps – benefits	12
Air curtains – useful information	14
Environmental protection	16
Featured functions	19
Effective filters	24
Modern technologies	26
Wi-Fi control	28
Description of functionalities	30
Kaisai product range	34
Product series	36
Wall air conditioners	38
Wall air conditioners Fly	40
Wall air conditioners One	44
Wall air conditioners Pro+	48
Multi Split systems	52
Commercial air conditioners	58
Floor standing air conditioners	60
Floor/ceiling air conditioners	64
Compact cassette air conditioners	68
Super Slim cassette air conditioners	72
Slim duct air conditioners	76
Condensing units	80
Portable air conditioners	84
Portable air conditioners kpph	87
Portable air conditioners kpc	88
Portable air conditioners kppd	89
Air curtains	90
Air curtains Silver	92
Air curtains Gold	94
Air curtains Platinum New	96
Heat pumps	98
Heat pumps split R32 (kha)	100
Heat pumps monoblok R32 (khc)	102
Heat pumps split R410A (keh)	104
Wired and wireless controllers	108
Jnit dimensions	110
Pallet arrangement – logistics data	119
Contact data	121

User-friendly air conditioning


Kaisai units are **high quality, environmental-friendly products,** designed with the operation comfort in mind. Mreover, we offer them at reasonable prices.

32 over 1000 lover 180 lover 180 points of sale lover 180 product types

The Kaisai brand debuted on the Polish market in 2011 and since then, year after year, it has been recording growing sales figures in Poland as well as on foreign markets. The latest technological solutions make Kaisai devices leaders in their class and meet high expectations in terms of ecology, safety, energy efficiency, quiet opera-

tion, comfort of use and manufacturer's warranty. Through many years of investment in technology, the Kaisai units have been recognized as some of the most innovative air-conditioning solutions, successfully implemented in public facilities and residential buildings.

Within the business platform of Kaisai International Corporation, following the principle of *Thinkglobally-worklocally*, the Kaisai brand is present in the following countries: Austria, Belarus, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Georgia, Iceland, Italy, Latvia, Lithuania, Luxembourg, North Macedonia, Malta, Moldova, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine.

The motto "We Care about Air" derives from passion and understanding of human needs and is a declaration of responsibility for people and the environment. Our focus is on the quality and comfort of air – in the office, at home and in all rooms where people are present. Our values: respect for the environment, partnership with the Client, responsibility for the Employee, taking care of the business environment.

ABOUT KAISAI BRAND

The basic scope of the Academy's activities includes:

Product-related and technical trainings

Authorization trainings
– KEH heat pumps

Sales trainings Testing Kaisai products

The Academy of the Klima-Therm Group is an innovative educational and research project, which main objective is to constantly boost the knowledge of the industry environment regarding current trends in the field of air conditioning and ventilation as well as the latest technological, design-related and product solutions. Thanks to the Academy's activity, customers can be sure of the professional knowledge of installers: it is a guarantee of safety and trouble-free operation of our equipment.

Kaisai is committed to ensure the highest quality of its products and installations. The Kaisai Authorized Service Partners, as members of the Klima-Therm Group, benefit from the training opportunities offered by the Academy. Trained installers not only receive theoretical knowledge, but can also acquire practical skills under the supervision of qualified trainers. The Academy has 3 training centers serving customers from all over Poland: in Gdansk, Warsaw and Katowice.

Kaisai products meet stringent safety, health and environmental requirements and have been awarded several labels and certifications. The refrigerants used are certified by the National Institute of Public Health.

CE

150 9001:2000

A++ (EU)626/2011

A+ (EU)626/2011

PZH

Discover Kaisaitechnology

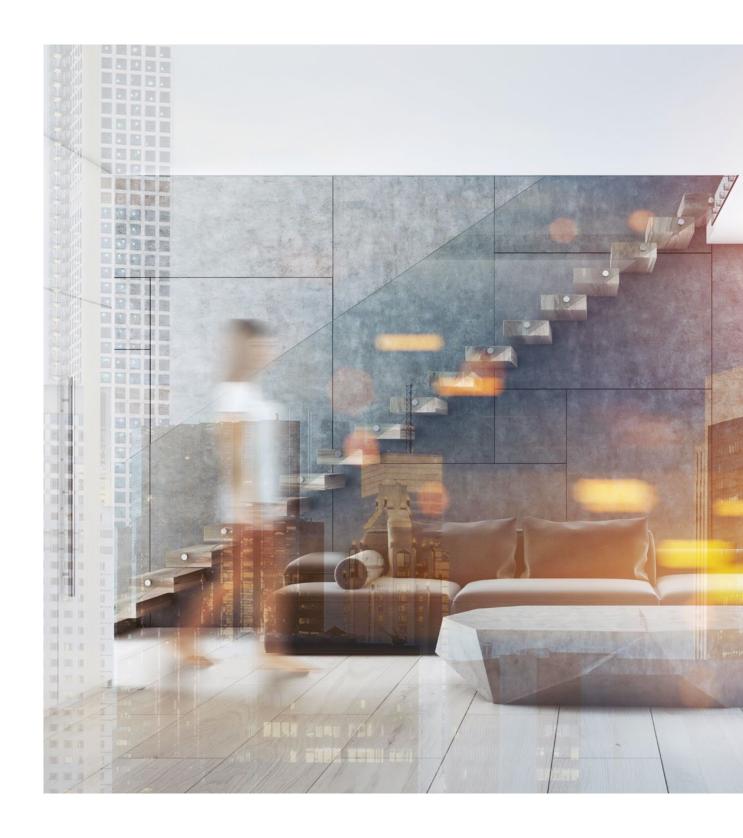
User guide

- Air conditioning selection
 - Air conditioning in the house
 - Operating costs
 - Air conditioning is about ensuring comfort and health
 - Choice of air conditioner
 - Relevance of the energy efficiency class

- **Heat pump** benefits
 - Low operating costs
 - User comfort
 - Safe use
 - Green energy source
 - Comfort all year round
 - Reducing CO2 emissions

- **Air curtains** 14
 - Description of operation
 - Benefits of air curtains
- 16 **Environmental** protection
 - GWP what is it?
 - ODP what is it?
 - 20/20/20 program

 - Energy efficiency class
- The most interesting features of Kaisai units



More information about air conditioning, heating and ventilation can be found in the guide at our webiste:

kaisai.com

HINTS AIR CONDITIONING

Selection of air conditioning system

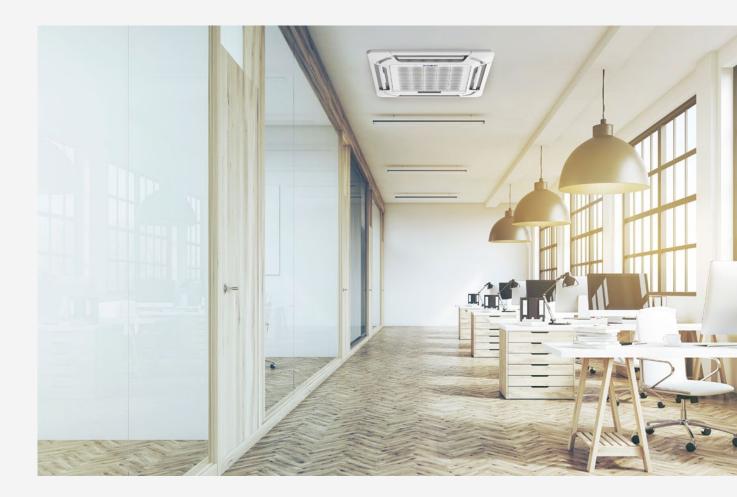
Air conditioning in house application

From March to September, the days are longer and the temperatures are higher. Especially in the period from June to August there are periods of several weeks of heat, which can cause discomfort while staying indoors. We recommend to consider it in advance, ensuring the ideal, comfortable air temperature regardless of the season and day.

Air conditioning was previously associated mainly with office premises and public buildings. Currently, it is within the financial reach of individual users. In addition, thanks to the heating function available in state-of--the-art units, air conditioners can also serve as an additional source of heat in colder periods. Air conditioning is an efficient and economical alternative to fans and electric heaters - it consumes up to 4 times less electricity.

Operating costs

Domestic air conditioning is fundamentally different in terms of power consumption from more demanding industrial air conditioning. A device with a capacity of 2.6 kW consumes less than 1 kW of electricity per hour of operation, which costs about 0.10 EUR.*


There are a number of general recommendations and indicators to help users determine the required power level. The most important parameter is the cubic capacity of the air-conditioned room. It is assumed that a cooling capacity requirement of 40 W/m³, or 120 W per m² of surface area, can be estimated for standard rooms of approximately 3 m in height. This means that even the smallest 2.6 kW air conditioner can be sufficient for a room of 21 m².

*Cost estimated for Warsaw (Poland) 2019.

HINTS AIR CONDITIONING

Air conditioning is about ensuring comfort and health

Home air conditioning is the comfort available for everyone. It allows you to freely control the temperature in your home, apartment, office or small retailer – replacing or complementing the central heating system. However, the advantages of an air-conditioning system do not stop there. Implementation of air-conditioning unit turns out to be an excellent way to take care of the health of all users. Modern air conditioners eliminate bacteria and fungifrom the air, preventing diseases caused by them, and special filters improve the overall air quality. Air conditioning is also a good solution for maintaining adequate air parameters, when the outdoor air is heavily polluted, e.g. by smog.

Relevance of energy efficiency class

The more energy-efficient the device is, the higher its energy class is. When buying an air conditioner, it is worth paying attention to the fact that the energy class of the air conditioner should be at least at the A level. When the air conditioner is in operation, remember to close the windows in the air conditioned room, thus contributing to savings in energy bills. Do not set too low temperature in a room with the remote control, as this may result in increased operating costs.

Selection of air conditioner

Each split air conditioner consists of two components: an outdoor unit and an indoor unit. The first one is installed outside the building, the second one – inside the room.

The principle of the air conditioner operation is based on the physical properties of the refrigerant, which in the case of Kaisai appliances is an ecological refrigerant - R32. Depending on the operating mode of the air conditioner, the refrigerant condenses or evaporates in the indoor unit, releasing heat to or extracting it from the environment accordingly. This way, the air in the room is heated or cooled, and thanks to the system of filters, the air is also purified.

The unit does not blow additional air from the outside, but only cools the air inside. It protects the health of the residents, especially when the air is polluted by the smog.

HINTS **HEAT PUMP**

Heat pump – benefits

Heat pumps, by using the energy stored in the air, are able to heat your house and provide the domestic hot water. Operation of heat pump is made possible by a refrigerant that circulates in a closed circuit and transfers the heat from the environment into the building.

Low operating costs

Heat pumps make a substantial contribution to a significant reduction of the house operating costs. The costs of room heating and domestic hot water (DHW) can be reduced up to four-fold by means of the heat pump. By using the pump, we also reduce the maintenance costs of the system, among other things because there is no need for the chimney inspection.

Resident comfort

Heat pumps are the ideal solution because they provide comfort of operation thanks to the automation features. Convenient indoor temperature and desired domestic water parameters are set up using an intuitive controller. The user does not have to worry about turning on/off the heating system - the unit automatically maintains thermal comfort all year round.

Safe operation

Heat pumps are a very safe solution as they do not pose a fire hazard or a risk of gas escaping or exploding when compared to traditional domestic heating appliances. You do need to worry about gas sensors and you can sleep peacefully.

Green energy source

Heat pumps are one of the ecological sources of energy, because instead of coal, gas or oil they make use of the air potential, using refrigerants that have a much smaller impact on the environment than non-renewable energy sources. The electricity supply also allows the use of home photovoltaics in the so-called "passive house system" (i.e. the system does not consume energy from outside).

An incredible advantage of air-to-water heat pumps is the fact that even 75-80% of the heat going to the heating system is free heat, obtained from the outdoor air. The remaining 20-25% is electric energy needed mainly for compressor and heating system circulation pumps.

Comfort all year round

Reducing CO, emissions

Air curtains – useful information

Description of operation

Air curtains are mounted above the entrance door. They create a strong stream of cold or warm air directed downwards, which prevents the inflow of air from outside the building and also creates an air barrier against dust, smoke and insects.

Benefits of air curtains

Air curtains are small but functional devices, which allow you to save energy by maintaining a constant temperature and avoiding unpleasant draughts inside a premise.

Their application makes air conditioning more effective and definitely cheaper to use both in cooling mode (does not allow for mixing with air from outside) and heating mode (prevents the flow of heat out of the room).

Air curtains are especially recommended for service premises and retail outlets – they reduce air conditioning bills in summer and heating bills in winter.

HINTS ECOLOGY AND ECONOMY

Environmental protection

GWP - what is it?

Greenhouse potential (GWP – Global Warming Potential) is a figure expressing the global warming potential of a refrigerant if released into the atmosphere. This is a relative value that compares the effect of 1 kg of refrigerant with the effect of 1 kg CO₂ per 100 years.

ODP – what is it?

Ozone Depletion Potential is an indicator of the harmfulness of chemical substances for the ozone layer. It is a value comparing the influence of a given refrigerant with the analogous mass of R11 refrigerant. The ODP value of R11 refrigerant is defined as 1, the modern refrigerant – R32 –has the potential defined as 0.

R32

Environmentally friendly refrigerant R32, available in the entire Kaisai product range

Kaisai currently applies the latest environmentally friendly refrigerant – R32 – in its products. It is more efficient than refrigerants applied before, so that the air-conditioning system requires less refrigerant volume and has significantly better environmental impact factors. It is a modern solution that takes into account both ecological needs and the economy of application.

Main characteristics of R32 refrigerant

ECOLOGICAL

R32 has the lowest GWP coefficient available on the market, equal to 675, and does not cause damage to the ozone layer, thanks to the ODP coefficient equal to 0. Compared to older solutions, it has as much as 75% less impact on global warming. What is more, it can also be recycled.

ECONOMICAL

Compared to R410A, R32 has a higher energy efficiency, so the air conditioning system requires less energy and the efficiency of the equipment increases by up to 10%.

SAFE

The R32 has low toxicity and low flammability – it does not pose a threat to life and health even in the event of leaks in the installation.

20/20/20 program

Kaisai follows the assumptions of the energy and climate change package, which assumes an increase in the consumption of energy from renewable sources and an increase in energy efficiency by 20% and a reduction in CO₂ emissions by 20% by 2020. Directive 2009/125/EC adopted by the European Union concerns the rules for setting requirements for Energy-related Products (ErP). From 1 January 2013, the provisions of the Directive apply to air conditioners with a cooling capacity of less than 12 kW.

20% --- **20**

2

Reducing CO, greenhouse gases **Reducing primary** energy consumption **Increasing the share** of renewable energy

R290

Safe and environmentally friendly refrigerant available in portable air conditioners

The refrigerant - R290 - is known as propane, a colorless, odorless organic compound belonging to the group of saturated hydrocarbons existing in natural gas fields.

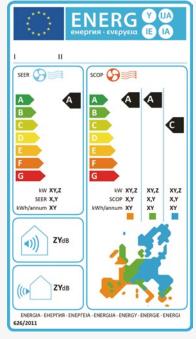
Devices based on propane have been successfully operating in various countries of the European Union for many years. The propane popularity is steadily increasing due to its low environmental impact while maintaining very good thermodynamic properties. The R290 factor has a zero ODP, which means no negative impact on the ozone layer, and an exceptionally low GWP, which indicates the global warming potential. Propane is a combustible gas and has a flammability limit of 2.1% by volume in the air. This means that with 230g of R290 in Kaisai appliances and special fireproofing, it is also safe for use in confined spaces.

R290 has a low sensitivity to moisture and does not cause corrosion, so it can operate in refrigeration systems equipped with both hermetic and semi-hermetic compressor units.

Energy efficiency class

Energy labels shall be affixed to any electrical household appliance sold in the European Union. This is regulated by the special EU Directive 2010/30/EU. Labels inform the user about the quality of the product, taking into account its energy efficiency. The label ensures that everyone before the purchase decision can find out which unit will be the cheapest to operate. The energy efficiency rating, also referred to as the energy class, is indicated by the letters: for air conditioners, a scale from G (lowest) to A++++ (highest) has been determined.

We also use energy efficiency coefficients to assess energy savings: SEER for cooling and SCOP for heating. These factors determine the ratio of the cooling/heating power achieved by the air conditioner to the electrical power drawn by the unit from the mains during an entire season. Units with SEER=6 and SCOP=4 (class A++) from 1 kW of electricity on average per season can generate 6 kW of cooling energy or 4 kW of heat energy and can be up to 4 times cheaper in operation than fans and electric heaters.


10-grade energy efficiency scale (from A++++ to G)

Power efficiency for cooling and heating

Efficiency determination based on calculations of multiple features, corresponding to the actual power consumption of the machine during operation

Sound power level

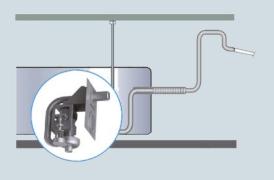
Data for 3 seasons (moderate – required, hot and cold – optional)

CURRENT ENERGY LABEL
Valid from 1 January 2013. Air conditioners up to 12 kW

	SEER (cooling)	SCOP (heating)
A ***	SEER ≥ 8.50	SCOP ≥ 5.10
A ⁺⁺	6.10 ≤ SEER < 8.50	4.60 ≤ SCOP < 5.10
A ⁺	5.60 ≤ SEER < 6.10	4.00 ≤ SCOP < 4.60
Α	5.10 ≤ SEER < 5.60	3.40 ≤ SCOP < 4.00
В	4.60 ≤ SEER < 5.10	3.10 ≤ SCOP < 3.40
C	4.10 ≤ SEER < 4.60	2.80 ≤ SCOP < 3.10
D	3.60 ≤ SEER < 4.10	2.50 ≤ SCOP < 2.80
E	3.10 ≤ SEER < 3.60	2.20 ≤ SCOP < 2.50
F	2.60 ≤ SEER < 3.10	1.90 ≤ SCOP < 2.20
G	SEER < 2.60	SCOP < 1.90

HINTS UNIT FUNCTIONS

Featured **functions**


Operation at low outdoor temperatures

Thanks to the specially designed control board, the air conditioner can operate as a cooling function even at outdoor temperatures down to -15°C.

Built-in condensate pump

Thanks to the integrated pump, condensate can be removed up to a height of 750 mm.

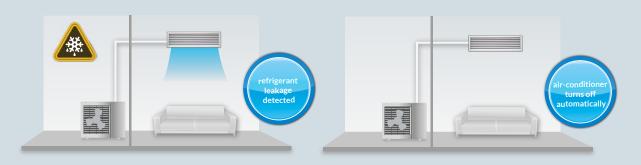
Temperature sensor

The temperature sensor is built into the remote control. Thanks to this, the temperature measurement is performed close to the resident, while the operation of the air conditioner is adjusted to the actual room conditions.

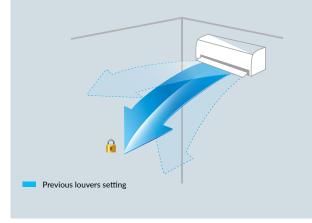
360° air supply

Cassette air conditioners are equipped with additional supply air slots in the panel. This design ensures 360° fan operation which provide even better air distribution in an air-conditioned room.

Automatic restart

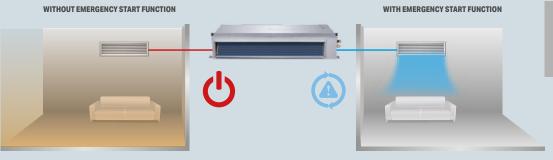

In case of the units equipped with the automatic restart function, the air conditioner remembers the last settings when the power supply is interrupted and automatically restores them when power is resumed.

Indication of refrigerant leakage


The air conditioner has a refrigerant leakage indication function. If the unit detects a leak, the indoor unit display shows EC message and the air conditioner is automatically switched off. This function also protects the compressor against damage.

Memory of louvers settings

Thanks to the louvers settings saving function, after each shutdown the air conditioner retains the last settings and restores them after restarting.

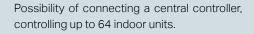


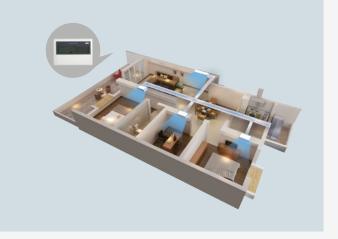
3D air flow

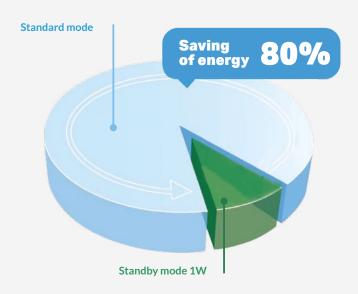
Horizontal and vertical louvers are controlled automatically and ensure uniform temperature distribution in a room as well as optimum air circulation.

Emergency

use


The emergency function of the air conditioner allows the unit to operate even if one of the sensors has failed. Thanks to this solution, operation of the air conditioner is not interrupted and it can operate until the fault is rectified.


Fresh air


The outdoor air can be supplied via a connecting duct to the air conditioner, thus improving the thermal comfort in the room.

Central controller

Standby mode

In standby mode, the power supply is disconnected from unused electronic components, reducing power consumption to 1W. Compared to standard devices that consume 5W on average in standby mode, it saves about 80% of energy.

Constant heating 8°C

The function of maintaining a constant temperature of 8°C in heating mode is a solution especially useful in bungalows/camping pods and detached houses.

It keeps the air conditioner at a constant temperature of up to 8°C; it prevents rooms from cooling down and pipes from freezing. This prevents the build-up of moisture and thus the development of microorganisms and fungi. Air

conditioners with this option are more efficient solution than commonly used electric heaters with thermostats.

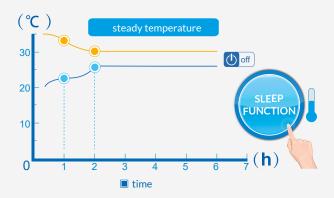
This is what distinguishes Kaisai home air conditioners in their class. Combined with the Smart AC function and the ability to set the temperature at a distance, this makes our products ideal for users who are often away from home.

Twin system

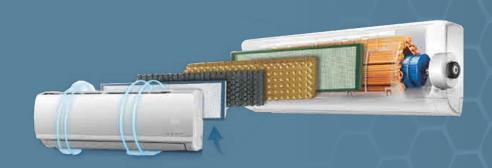
The TWIN system allows you to connect two indoor units of the same power level to a single outdoor unit.

The system consists of an outdoor unit with a cooling capacity of 10.6 or 14.0 kW, a T-piece separating the refrigerant flow and two indoor units with a capacity of 5.3 kW or 7.0 kW. They work simultaneously, so they are ideal for air conditioning of large rooms such as conference and banquet rooms, open space offices, restau-

rants and other service and commercial facilities. Equal operation of two air conditioners makes it easier to maintain uniform temperature throughout the room. This solution, like the Multi Split system, also saves space, by using a single outdoor unit.


The Twin system can be used with Kaisai air conditioners: floor and ceiling air conditioners, Slim duct air conditioners, Super Slim cassette air conditioners.

Sleep function

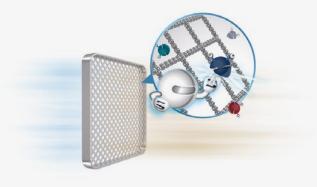

Activating the sleep function causes the unit to increase the set temperature by 1°C per hour in cooling mode (to decrease – in heating mode) within two hours. During this time the fan is running at low speed. The air conditioner switches off after 5 hours. Slow, unnoticeable temperature change and automatic shutdown guarantee comfort and energy saving.

Breathe clean air

For the sake of air quality

Modern filters used in Kaisai products guarantee clean and fresh air in an air-conditioned room. The filters capture very small dust particles, bacteria, fungi and germs, leaving a healthy and clean air.

Self-cleaning of heat exchanger


In order to ensure the highest hygienic standards and comfort of use, Kaisai brand appliances use the latest self-cleaning technology of the internal heat exchanger.

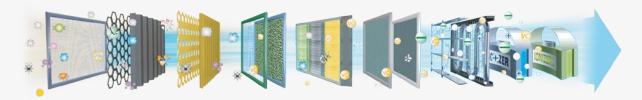
After operation, the air conditioner switches to the cleaning mode. During the process, it removes moisture accumulated in the unit, which prevents the growth of microorganisms and fungi.

Kaisai air conditioners are designed for the sake of health and comfort of users.

Filter with silver ions

The silver ion filter is designed to destroy bacteria and prevent the development of microorganisms such as viruses and fungi. The internal structure of silver ions destroys microorganisms.

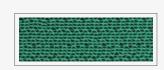
Filter with C vitamin


The filter emits vitamin C, which has a positive effect on the skin, protecting it from the sun's rays. As an active antioxidant, vitamin C has a nourishing effect, stimulates collagen production and reduces stress.

Catalytic filter

By using a multilayer catalyst layer and a fiber layer, the filter removes harmful particles and unpleasant odors from the air. It also eliminates volatile formaldehyde particles and harmful organic compounds.

High-density filter


Application of high density filters significantly increases the efficiency of dirt trapping - by up to 50%.

3M filter

Thanks to its unique design, the filter captures dust particles and other harmful substances from the air, which can cause respiratory diseases.

Modern technologies

Kaisai units are characterized by high quality of workmanship and application of modern technologies – all for the convenience of the user. Efficient and comfortable air conditioning is now available for everyone.

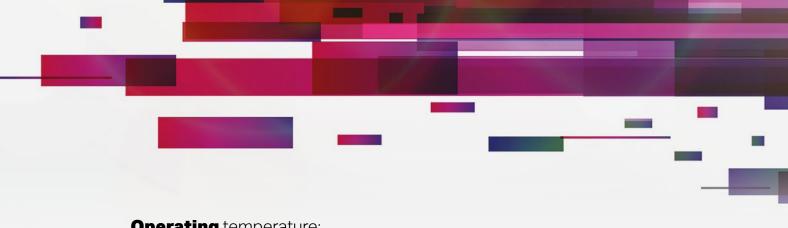
inverter

Inverter technology

Inverter technology in Kaisai air-conditioning units reduces power consumption, which in turn lowers down the cost of cooling rooms. Its application means quiet operation of the device and faster achievement of the desired air temperature.

Due to application of robust and pressure-resistant materials, the compressor in Kaisai air conditioners is extremely reliable element. In addition, it has a high-performance motor with a wide voltage range, so it can operate under extreme conditions in 24-hour mode and reach temperatures up to 60°C (230V/50Hz).

HIGH-PERFOR-


HIGH-PRESSURE RESISTANCE

Total installation length

Kaisai's Split range units enable installation of indoor and outdoor units at a large distance from each other - up to 65 m in total and up to 30 m vertically. This makes it much easier to plan even in older buildings. You don't have to adjust the design of your house to the air-conditioning system - we adapt it to your needs.

Operating temperature:

Thanks to modern technology and the new R32 refrigerant, Kaisai air conditioners can operate in a wide range of outdoor temperatures: -15°C to 50°C in cooling mode and -25°C to 30°C in heating mode.

They can do their job all year round, providing users with cooling comfort in summer and additional heating in winter.

cooling [°C]

-15 ÷ 50

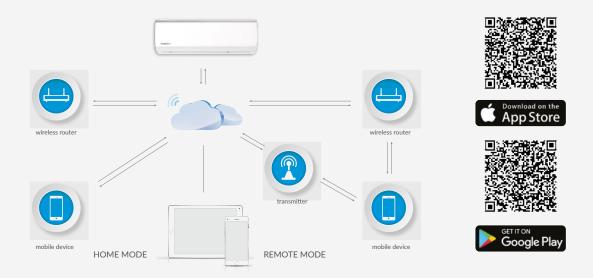
heating [°C]

 $-25 \div 30$

Dimensions and design

We make every effort to ensure that Kaisai appliances follow the latest trends in design: we want the air conditioner to be neatly shaped and in line with the trend of modern interior design.

In addition, when designing indoor cassette and duct units, we take into account the space occupied by the equipment. Thanks to the optimal size of the devices, the suspended ceiling does not require much technical space and thus leaves more room for use.



Kaisai products comprise number of features improving the usage comfort, for example, new control options, so that managing the air conditioning has never been so convenient and easy.

Smart AC

Smart AC is a Wi-Fi module that comes as standard with all Kaisai wall-mounted air conditioners. Thanks to its application, the user can control the device through an application installed on a tablet or smartphone, also while away from home or office.

Using the Wi-Fi function, the user can turn the device on or off, change the temperature and some operating functions from anywhere in the world, where there is Internet access. Control via Wi-Fi allows you to save electricity and improve the comfort of operating air conditioning system by controlling the temperature in the apartment or office from any location.

commercial air conditioners

KAISAI air conditioner models: cassette, duct and

Smart port

Smart port is a WI-FI module for KAISAI commercial air conditioners.

changing the operating

preview of basic information about the operation of the air conditioner

Description of functionalities

Health

Evaporator self-cleaning

After operation, the air conditioner switches into the cleaning mode and removes any moisture accumulated in the indoor unit. This prevents the development of microorganisms and fungi.

Filter with C vitamin

The filter emits vitamin C into the room. This way the vitamin C is absorbed by the skin. This vitamin improves skin firmness, protects against harmful UV rays and reduces stress.

Filter with silver ions

This filter contributes to the elimination of bacteria and other harmful microorganisms thanks to application of active silver ions. It ensures a high standard of air hygiene.

Catalytic filter

Catalytic filter, due to application of multilayer catalyst coating, removes unpleasant odors from the air and effectively eliminates harmful organic compounds and volatile formaldehyde particles.

3M filter

Thanks to its unique design, this filter more effectively captures dust and harmful allergic substances that cause respiratory diseases.

High-density filter

Application of an increased density filter improves the efficiency of trapping contaminants, including dust and particulate. It not only protects the unit, but also maintains the air quality.

Fresh air

Fresh outdoor air is supplied to the unit via a connecting hose. This significantly improves the "atmosphere" in a room.

Comfort

Turbo mode

Thanks to this option, the air conditioner operates at increased speed and ensures fast cooling or heating of the room.

3D air flow

Horizontal and vertical louvers are controlled automatically and ensure uniform temperature distribution in a room as well as optimum air circulation.

Automatic restart

During a power outage, the air conditioner remembers the last settings and restores them once the power is resumed. It does not require reprogramming of the unit after each power outage.

360° air supply

The unit can provide the best possible air distribution throughout the room with additional supply air slots in the air conditioner panel.

Temperature compensation

The unit compensates for the difference between the reading of the temperature sensor on the indoor unit and the actual temperature on the room floor. The desired temperature is reached throughout the room, not just around the air conditioner.

Cold air supply control

In order to minimize the feeling of unpleasant cool airflow, the air conditioner automatically reduces the fan's RPM in heating mode and increases the fan's speed as the air heats up.

Wide temperature range

Operation in wide range of outdoor temperatures. -15 to 50°C in cooling mode and -25 to 30°C in heating mode.

Cost efficiency

8°C continuous heating function

When the user is absent, the air conditioner maintains a constant room temperature of up to 8°C in heating mode, preventing the room from cooling down.

Standby mode

In standby mode, disconnection from unused components reduces power consumption even up to 80%.

Sleep function

Within two hours, the unit increases (in heating mode – decreases) the set temperature by 1°C per hour, and the fan is running at low speed. This reduces electric energy consumption and provides the best comfort for the user.

5 fan speeds of the outdoor unit

Thanks to the inverter technology, the outdoor unit has 5 modes of operation, which improves the energy efficiency and the comfort of operation of the unit.

12 fan speeds of indoor unit

The 12-stage fan control of the indoor unit ensures maximum comfort in the room and improves the energy efficiency.

Temperature sensor in the remote control

The temperature sensor built into the remote control allows measurement of the temperature closer to the user, so that the unit can better adapt to the surrounding area.

AC will run into a 8-hour saving mode which cuts 60% energy off against normal mode.

Safety

Evaporation of condensate

The condensed water is transferred to the condenser where it evaporates. As a result, the condensate tank is not required.

Operation at low outdoor temperatures

The air conditioner operates in the cooling mode even at outdoor temperatures as low as -15°C.

Operation at very low outdoor temperatures

The air conditioner operates even at outdoor temperatures as low as -25°C.

Indication of refrigerant leakage

The error code will be displayed on the control panel of the indoor unit, when the outdoor unit detects the refrigerant leak.

Emergency use

If one of the sensors fails, operation of the unit is not interrupted and can be continued until the failure has been corrected.

Self-diagnosis

The air conditioner monitors its operation and switches off when a malfunction or failure is detected. The error code is displayed on the control panel of the indoor unit.

Alarm port

The air conditioner is equipped with the alarm port enabling output of the fault signal.

Timer

The timer enables setting the time of automatic switching on and off the air conditioner.

Memory of louvers settings

After each shutdown, the air conditioner remembers last settings of the louvers and restores them after the restart.

Automatic louver (swing)

Automatic operation of horizontal louvers significantly improves the air distribution in the room.

Port ON/OFF

The air conditioner is equipped with the port enabling remote switching on/off from a long distance (using non-voltage signal).

Mono and multi

The indoor unit is universal and can be used in single-unit (mono-split) and multiple-unit (multi-split) systems.

Multi directional casters

Thanks to the integrated casters, changing location of the air conditioner is easier.

Simple installation

The air conditioner enables easy installation and does not require any additional operation efforts.

Wi-Fi Control

The Wi-Fi module enables remote control of the air conditioner with a smartphone or tablet – from anywhere in the world.

Twin combination

Two identical indoor units operate simultaneously, connected to one outdoor unit.

Built-in condensate pump

Thanks to the integrated pump, condensate can be discharged up to a height of 750 mm.

Two-sided installation

It is possible to connect refrigerant supply pipes and condensate drain from both sides of the indoor unit, which facilitates installation and adaptation to the layout of the room.

Compact dimensions

Thanks to well planned components, the air conditioner features small dimensions while maintaining full performance parameters.

Customized remote control

It is possible to change the factory settings of the remote control to suit the current needs of the user

Large installation lenght

Thanks to the applied technological solutions, the indoor and outdoor units of the air conditioner can be separated from each other up to 50 m in total and 25 meters vertically.

Central controller

Possibility of connecting a central controller, controlling up to 64 indoor units.

Very large installation lenght

Thanks to the applied technological solutions, the indoor and outdoor units of the air conditioner can be separated from each other up to 65 m in total and 30 meters vertically.

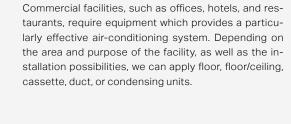
■ STANDAR	D OPTION	WALL -MOUNTED	FLOOR STANDING	FLOOR/ CEILING	CASSETTE COMPACT	CASSETTE SUPER SLIM	DUCT SLIM	PORTABLE
		-		-				
↓	Evaporator self-c- leaning							
	High-density filter	•						
♦	3D air flow	■/□	•	•				
\$\int\text{\$\displaystyle{\pi}\$}\$\$\\\ \end{align*}\$\$\$ \$\displaystyle{\pi}\$	Automatic restart	•	•	•	•	•	•	•
360°	360° air supply				•	•		
	Temperature compensation	•		•	•	•	•	
*	Cold air supply control	•	•	•	•	•	•	
	Wide temperature range	•	•					
	8°C continuous heating function	•						
TW	Standby mode	•						
(z _z z	Sleep function	•	•	•	•	•		•
	Temp. sensor in remote control	•	•	•	•	•	•	
<u>ı111.</u>	Condensate evaporation							•
	Operation at low outdoor temp.	•	•	•	•	•	•	
EC	Indication of refrigerant leakage	•	•	•	•	•	•	
	Emergency use	•		•	•	•	•	
	Self-diagnosis	•	•	•	•	•	•	•
(((((((((((((((((((((((((((((((((((((((Alarm port			•	•	•	•	
	Timer	•	•	•	•	•	•	•
	Automatic louver (swing)	•	•	•	•	•		•
	Mono- and mul- ti-unit	•			•		•	
X	Simple installation							•
	Twin combination			•			•	
	Two-sided installation	•		•			•	
	Fresh air			•	•	•	•	
	Memory of louvers settings	•		•	•	•		
	Port ON/OFF			•	•	•	•	
	Multi-directional casters							•
	Wi-Fi Control	•			0			
((€) () (() () () () () () (Built-in condensate pump				•	•	•	

Product range

Split air conditioners

Compact dimensions provide a subtle, elegant look, and a number of unit types allow them to be adapted to different types of interiors - both at home, in offices and in retail outlets.

Multi Split systems


These systems are recommended for buildings requiring air conditioning in many rooms. All the advantages of split-type devices with a single outdoor unit are retained.

Commercial air conditioners

Portable air conditioners

Portable air conditioners are used where it is not possible to install split air conditioners. Thanks to their modern design, they are suitable for home and office interiors.

Air curtains

Air curtains are an important addition to air conditioning in commercial premises. By creating an outdoor air barrier, they reduce the energy consumption of the air conditioning system and increase the comfort of the air in passageways.

Heat pumps

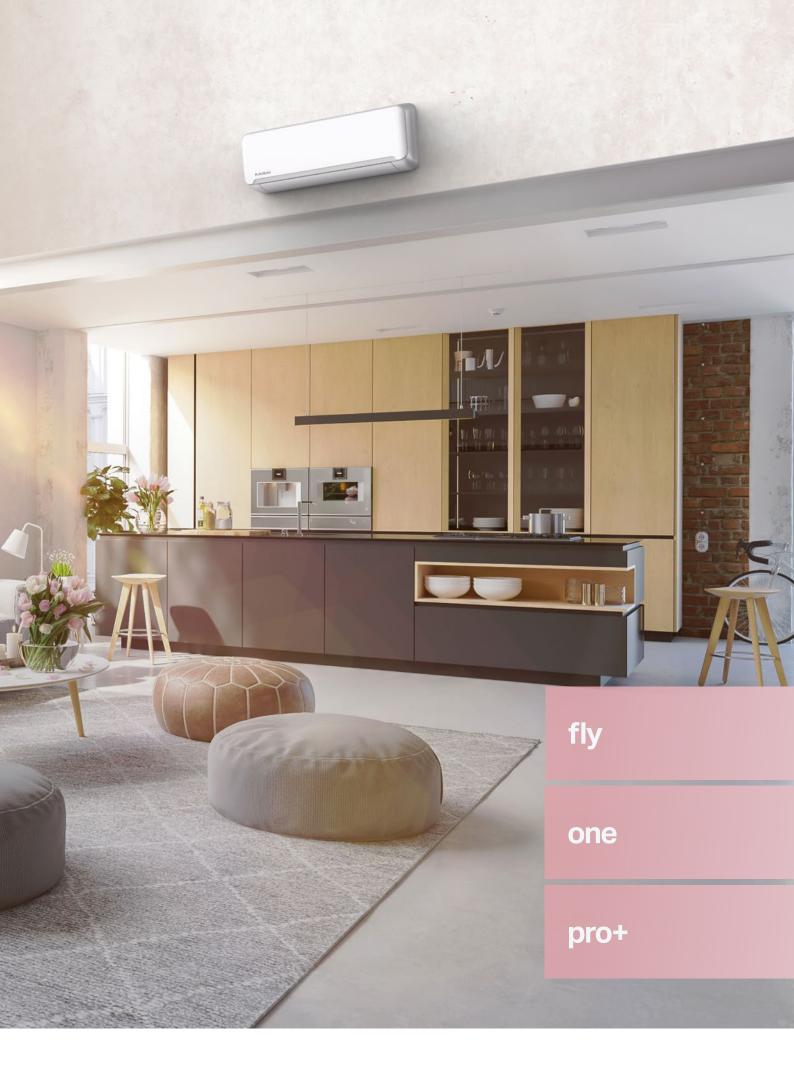
Air-to-water heat pumps use the energy stored in the air to heat the building and to achieve high temperatures for domestic hot water. They are an economic and ecological solution for everyone.

108 Controllers

Kaisai's wide range of controllers allows you to conveniently adjust the air conditioners to your needs. Wired controllers, wireless remote controls and the Smart AC – Wi-Fi function allow you to comfortably use and adjust the operation of air conditioners for the most demanding users.

Product series

				COOLING/HEATING CAPACITY [kW]				
TYPE		2,6	3,5	5,3	6,0	7,0÷7,2	7,9÷8,2	
AIR CONDIT	IONING UNITS							
	FLY	•	•	•		•		
	ONE	•	•	•		•		
	PRO+		•					
MULTI SPLIT	T SYSTEMS							
	WALL-MOUNTED	•	•	•		•		
	CASSETTE COMPACT	•	•	•				
	DUCT			•				
0	OUTDOOR UNITS			•		•	•	
COMMERCIA	AL AIR CONDITIONERS							
8	FLOOR STANDING							
	FLOOR/CEILING			•		•		
	CASSETTE COMPACT		•	•				
	CASSETTE SUPER SLIM					•		
	DUCT SLIM			•		•		
0	CONDENSING UNITS		•	•		•		
PORTABLE			·					
Ē	КРРН	•						
I	KPC	•						
	KPPD		•					
AIR CURTAI	NS							
	SILVER				•			
	GOLD		•		•		•	
	PLATINUM NEW						•	
HEAT PUMP	s							
	SPLIT R32						•	
9	MONOBLOCK R32					•		
	SPLIT R410A						•	


		COOLING/HEATIN	G CAPACITY [kW]			
9,0	10,0	10,6	12,0÷12,4	14,0÷14,1	15,2÷15,8	page.
						38
						40
						44
						48
						52
						56
						56
						56
		•	•			55
						58
				•		60
		•		•	•	64
						68
		•		•	•	72
		•		•	•	76
		•		•	•	80
		•		·	•	
						84
						87 88
						 89
						90
	•			•		92
	•			•		94
	•		•			96
						98
	•					100
•			•	•	•	102
	•		•	•		104

wall-mounted air conditioners

The compact dimensions of the wall-mounted units provide an elegant appearance and comfort of use, combined with high efficiency and simple installation.

The models come in many sizes, which makes it possible to adapt them to different types of interior, for both home and office use, as well as for commercial applications. The wall-mounted appliances do not require much space, and provide perfect room temperature in a very short time.

All wall-mounted air conditioners by Kaisai use the environmentally friendly R32 refrigerant, and standard accessories include the Wi-Fi function to control the unit using mobile devices. Depending on the model, there is a number of practical functions available for intuitive control and the optimum adaptation of the device to the needs of the user.

wall-mounted air conditioners

KWX 09 | 12 | 18 | 24 HRBI

The Kaisai Fly energy-saving wall-mounted air conditioner with R32 refrigerant combines elegance with functionality. Its universal, timeless design makes it suitable for any interior.

The device enables effective operation in the heating mode at outdoor temperature even down to -25°C. Wi-Fi function as standard increases the convenience of air conditioning control, and a modern wireless remote control allows you to use 3 additional functions: evaporator self-cleaning (Self Clean), continuous heating 8°C (Heating 8°C) and temperature sensor in the remote control (Follow Me).

excellent solution for bedroom, sitting room or office

UNIT FUNCTIONS

Indication of

Operation at

low outdoor temperature

8°C heating

function

Control Wi-Fi Emergency

Catalytic

filter

Standby

mode

Temperature sensor in remote control unit

Self--diagnosis

Timer

Automatic restart

Sleep function

Evaporator self-cleaning

Filter with silver ions

Filter with C vitamin

3M filter

MODEL	indoor unit outdoor unit		KWX-09HRBI	KWX-12HRBI	KWX-18HRBI	KWX-24HRBI
MODEL			KWX-09HRBO	KWX-12HRBO	KWX-18HRBO	KWX-24HRBO
Capacity	cooling	kW	2,6(0,9÷3,4)	3,5(1,1÷4,2)	5,3(1,8÷6,1)	7,0(2,1÷7,9)
average (min÷max)	heating	kW	2,9(0,8÷3,4)	3,8(1,1÷4,2)	5,6(1,4÷6,7)	7,3(1,6÷8,8)
Energy class	cooling/hea	ting	A++/A+	A++/A+	A++/A+	A++/A+
SEER	average	W/W	6,3	6,1	7,1	6,1
SCOP	average	W/W	4,0	4,0	4,0	4,0
Power input	cooling	W	732(100÷1240)	1213(130÷1580)	1539(140÷2360)	2345(160÷2960
average (min÷max)	heating	W	733(120÷1200)	1088(100÷1680)	1480(200÷2410)	2035(260÷3140
Operation current	cooling	А	3,2(0,4÷5,4)	5,3(0,5÷6,9)	6,9(0,6÷10,3)	10,2(0,7÷13,3)
average (min÷max)	heating	А	3,2(0,5÷5,2)	4,7(0,4÷6,9)	6,4(0,9÷10,5)	10,2(1,1÷13,3)
A ' Cl	indoor	m³/h	466/360/325	540/430/314	840/680/540	980/817/662
Air flow	outdoor	m³/h	1750	1800	2500	3000
Operating temperature	indoor	°C	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30
cooling/heating	outdoor	°C	-15÷50/-25÷30	-15÷50/-25÷30	-15÷50/-25÷30	-15÷50/-25÷30
0 1 1	indoor	dB(A)	38,5/32/25/21	40,5/34,5/25/22	44/37/30/25	44,5/42/34,5/28
Sound pressure level	outdoor	dB(A)	55,5	56	56	59,5
N	indoor	mm	805/285/194	805/285/194	957/302/213	1040/327/220
Net dimensions w/h/d	outdoor	mm	720/495/270	720/495/270	800/554/333	845/702/363
T	indoor	mm	870/365/270	870/365/270	1035/380/295	1120/310/405
Transport dimensions w/h/d	outdoor	mm	835/540/300	835/540/300	920/615/390	965/765/395
	indoor	kg	7,6	7,6	10,0	12,3
Net weight	outdoor	kg	23,2	23,2	34,0	51,5
	indoor	kg	9,7	9,7	13,0	15,8
Transport weight	outdoor	kg	25,0	25,0	36,7	54,5
Pipe diameter: liquid/gas		mm	6,35/9,52	6,35/9,52	6,35/12,7	9,52/15,9
Total length of installation		m	25	25	30	50
Max. level difference		m	10	10	20	25
Power supply	outdoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1
Circuit breaker/fuse	outdoor	А	10	16	16	20
Power supply lines	outdoor	# of wires x mm ²	3x1,5	3x1,5	3x2,5	3x2,5
Control lines	ind outd.	# of wires x mm ²	5x1,5	5x1,5	5x1,5	5x1,5
Factory amount of refrigerant	up to 5 rm	kg	0,55	0,55	1,0	1,6
Additional amount of refrigerant	over 5 rm	g/m	12	12	12	24

KWX-xxHRB air conditioners are technically comparable with KWX-xxHRD, they differ in a wireless controller. When operating in heating mode at an outdoor temperature below -15 °C the use of additional electric heaters is recommended.

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RG66A2

WIRELESS CONTROL UNIT RG57 (OPTION)

WIRED CONTROLLER KJR12B (OPTION)

WIRED CONTROLLER KJR90A (OPTION)

R32

one

wall-mounted air conditioners

KRX 09 | 12 | 18 | 24 AEXI

The Kaisai One wall mounted air conditioner is an energy-efficient appliance combining modern design with exceptionally simple installation, maintenance, and cleaning.

The new design of the air conditioner, with its properly shaped casing, and the optimised arrangement of the individual components inside the unit, help save time during installation and daily operation.

By using modern technology and the R32 refrigerant, the air conditioner can operate in a wide range of outdoor temperatures: from -15°C to +50°C in the cooling mode, and from -25 to +30°C in the heating mode.

Comfort of use is provided by a modern wireless remote control and a Wi-Fi function as standard, to control the device using your mobile phone or tablet.

particularly easy to install, maintain and clean

UNITFUNCTIONS

Operation at

-diagnosis

Emergency

8°C heating

Wide range of tempe-ratures

Automatic

restart

Control Wi-Fi

Standby

Evaporator self-cleaning

Timer

Sleep function

Catalytic filter

Filter with silver ions

Filter with C vitamin

3M filter

MODEL	indoor unit		KRX-09AEXI	KRX-12AEXI	KRX-18AEXI	KRX-24AEXI	
MODEL	outdoor unit		KRX-09AEXO	KRX-12AEXO	KRX-18AEXO	KRX-24AEXO	
Capacity	cooling	kW	2,6(1,2÷3,4)	3,5(1,4÷4,6)	5,3(2,0÷6,2)	7,2(2,1÷8,4)	
average (min÷max)	heating	kW	2,9(0,8÷3,4)	4,1(0,9÷5,1)	5,7(1,3÷,7,0)	7,6(2,1÷9,4)	
Energy class	cooling/heating		A++/A+	A++/A+	A++/A+	A++/A+	
SEER	average	W/W	6,8	6,3	6,7	6,4	
SCOP	average	W/W	4,0	4,0	4,0	4,0	
Power input	cooling	W	737(100÷1312)	1250(110÷1740)	1500(150÷2220)	2260(230÷3010	
average (min÷max)	heating	W	811(140÷1380)	1170(150÷1830)	1390(220÷2330)	2110(330÷3150	
Operation current	cooling	А	3,1(0,4÷6,0)	5,4(0,5÷7,6)	6,5(0,7÷9,7)	9,8(1,0÷13,1)	
average (min÷max)	heating	А	3,5(0,6÷6,3)	5,1(0,7÷8,0)	6,0(1,0÷10,1)	9,2(1,4÷13,7)	
	indoor	m³/h	486/433/329	550/490/360	810/720/550	1050/970/650	
Air flow	outdoor	m³/h	2000	2000	2100	2700	
Operating temperature	indoor	°C	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	
cooling/heating	outdoor	°C	-15÷50/-25÷30	-15÷50/-25÷30	-15÷50/-25÷30	-15÷50/-25÷30	
	indoor	dB(A)	41/35/29/20	41/37/30/23	45/41/33/24	46/44/35/27	
Sound pressure level	outdoor	dB(A)	55	55	57	59	
	indoor	mm	717x302x193	805x302x193	964x325x222	1106x342x232	
Net dimensions w/h/d	outdoor	mm	770x555x300	770x555x300	800x554x333	845x702x363	
	indoor	mm	785x375x285	875x375x285	1045x405x305	1195x420x315	
Transport dimensions w/h/d	outdoor	mm	900x585x345	900x585x345	920x615x390	965x765x395	
	indoor	kg	7,8	8,2	10,8	14,3	
Net weight	outdoor	kg	27,0	27,2	37,0	50,0	
	indoor	kg	10,3	10,9	14,3	18,2	
Transport weight	outdoor	kg	29,4	29,7	39,9	53,1	
Pipe diameter: liquid/gas		mm	6,35/9,52	6,35/9,52	6,35/12,7	9,52/15,9	
Total length of installation		m	25	25	30	50	
Max. level difference		m	10	10	20	25	
Power supply	outdoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1	
Circuit breaker/fuse	outdoor	A	10	16	16	20	
Power supply lines	outdoor	# of wires x mm ²	3x1,5	3x1,5	3x2,5	3x2,5	
Control lines	ind outd.	# of wires x mm ²	5x1,5	5x1,5	5x1,5	5x1,5	
Factory amount of refrigerant	up to 5 rm	kg	0,7	0,8	1,25	1,6	
Additional amount of refrigerant	over 5 rm	g/m	12	12	12	24	

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RG66A1

WIRELESS
CONTROL UNIT
RG57
(OPTION)

WIRED CONTROLLER KJR-120X2 (OPTION)

CENTRAL CONTROLLER CCMO3 (OPTION)

R32

wall-mounted air conditioners

KSN-12PRBI

The modern Kaisai Pro+ wall mounted air conditioner is a topclass energy-efficient appliance, distinguished by the exceptionally high SEER 8.1 and SCOP 4.6 energy-efficiency ratios.

The appliance is an ideal solution in cold climate zones, allowing for effective heating of rooms in a very wide range of outdoor temperatures. Thanks to the standard equipment, consisting of the compressor crankcase heater and the heater installed in the lower part of the outdoor unit casing, the air conditioner has the possibility to operate in the heating mode at outdoor temperature of up to -30°C.

The heat exchanger installed in the air conditioner is equipped with gold fins, which improve the efficiency of heat exchange, and also increase its anti-corrosion properties and prevent the growth of bacteria.

Pro+ combines modern design with a high level of user experience, thanks to the following functions: Wi-Fi as standard, Eco, and 3D air supply.

the highest energy efficiency class

UNITFUNCTIONS

high-density

of louvers settings

Catalytic

filter

Standby

mode

8°C heating

function

installation

Temperature sensor in remote control unit

Eco

Timer

Automatic

restart

Sleep function

Evaporator self-cleaning

Turbo mode

Filter with silver ions

Filter with C vitamin

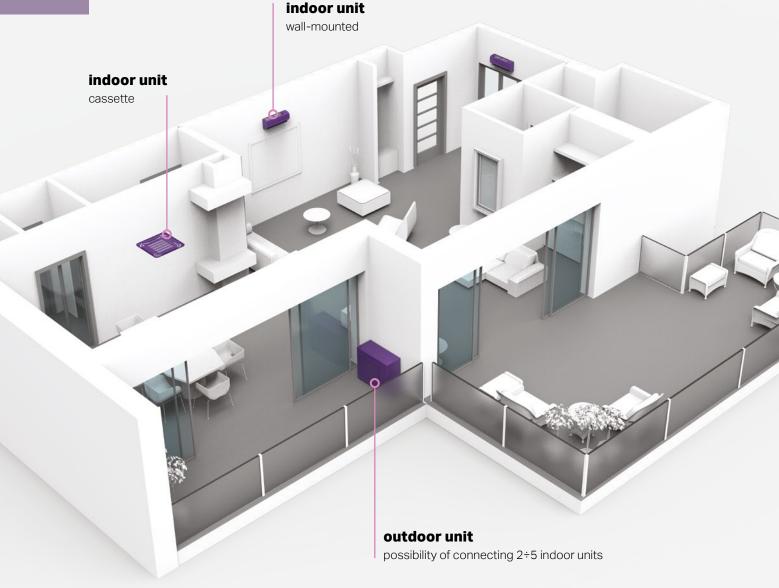
3M filter

MODEL	indoor unit		KSN-12PRBI	
MODEL	outdoor unit	outdoor unit		
Capacity	cooling	kW	3,5(0,9÷4,7)	
average (min÷max)	heating	kW	3,5(1,0÷6,5)	
Energy class	cooling/heating		A++/A++	
SEER	average	W/W	8,1	
SCOP	average	W/W	4,6	
Power input	cooling	W	977(53÷1590)	
everage (min÷max)	heating	W	1095(167÷2130)	
Operation current	cooling	А	4,2(0.5÷7.0)	
everage (min÷max)	heating	А	4,8(1.2÷9.4)	
A' 0	indoor	m³/h	611/479/360	
Air flow	outdoor	m³/h	2000	
Operating temperature	indoor	°C	18÷32/0÷27	
cooling/heating	outdoor	°C	-15÷43/-30÷30	
	indoor	dB(A)	42/35/25/22	
ound pressure level	outdoor	dB(A)	55,5	
	indoor	mm	802x297x189	
let dimensions w/h/d	outdoor	mm	800x554x333	
0.11	indoor	mm	875x375x285	
ransport dimensions w/h/d	outdoor	mm	920x615x390	
a	indoor	kg	8,5	
et weight	outdoor	kg	34,7	
	indoor	kg	11,1	
ransport weight	outdoor	kg	37,5	
ipe diameter: liquid/gas		mm	6,35/9,52	
otal length of installation		m	25	
lax. level difference		m	10	
ower supply	outdoor	V/Hz/Ph	220÷240/50/1	
ircuit breaker/fuse	outdoor	А	10	
Power supply lines	outdoor	# of wires x mm ²	3x1,5	
Control lines	ind outd.	# of wires x mm ²	5x1,5	
actory amount of refrigerant	up to 5 rm	kg	0,87	
Additional amount of refrigerant	over 5 rm	g/m	12	

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RG66B7

WIRELESS
CONTROL UNIT
RG57
(OPTION)


multi split systems

Air conditioners working in the Multi Split system are extremely energy-efficient and highly efficient devices. The system design allows for installation of 2 to 5 Fly wall units or Compact cassette units to one cooling unit (outdoor unit).

Each of the indoor units operates individually, has the ability to independently adjust the temperature and adjust the power to the needs of users. When buying a Multi Split air conditioner, we must select the cooling capacity needed for each room where there is a wall or cassette air conditioner. Selected devices are installed in rooms, and at the very end we connect each of the air conditioners to the previously installed one, large cooling unit. In this way, we do not need to install an indoor or outdoor unit in every room.

multi split systems

Air conditioners working in the Multi Split system are extremely energy-efficient and highly efficient devices. The system design allows for installation of 2 to 5 Fly wall units or Compact cassette units to one cooling unit (outdoor unit).

Each of the indoor units operates individually, has the ability to independently adjust the temperature and adjust the power to the needs of users. When buying a Multi Split air conditioner, we must select the cooling capacity needed for each room where there is a wall or

cassette air conditioner. Selected devices are installed in rooms, and at the very end we connect each of the air conditioners to the previously installed one, large cooling unit. In this way, we do not need to install an indoor or outdoor unit in every room.

outdoor units

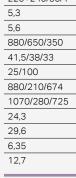
K2OC-18 | 3OE-27 | K4OE-28 HFN32 K40B-36 | 50D-42 HFN32

TECHNICAL SPECIFICATION



MODEL			K2OC-18HFN32	K30E-27HFN32	K40E-28HFN32	K4OB-36HFN32	K50D-42HFN32
	cooling, average	kW	5,3	7,9	8,2	10,6	12,4
Capacity	heating, average	kW	5,6	8,2	8,8	10,6	12,4
Energy class	cooling/heating	W/W	A+/A	A++/A+	A++/A	A++/A	A++/A
SEER	average	W/W	6,0	6,1	6,1	6,2	6,1
SCOP	average	W/W	3,8	4,0	3,8	3,8	3,5
	cooling, average	W	1630	2450	2540	3270	4260
Power input	heating, average	W	1390	2100	2200	2760	3100
Operation	cooling, average	А	7,1	13,7	11,3	14,3	18,5
current	heating, average	А	6,1	12,5	9,8	12,1	13,5
Air flow		m³/h	2200	2700	3800	4000	3850
Operating tem	p., cooling/heating	°C	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24
Static pressure	e level	dB(A)	56	54	61,5	63	64
Net dimension	s w/h/d	mm	800/554/333	845/702/363	946/810/410	946/810/410	946/810/410
Transport dime	ensions: w/h/d	mm	920/615/390	965/775/395	1090/875/500	1090/875/500	1090/875/500
Net weight		kg	35,5	51,1	62,1	68,8	73,3
Transport weig	ht	kg	38,5	55,8	67,7	75,6	80,4
Pipe diameter:	liquid/gas	mm	2x 6,35/9,52	3x 6,35/9,52	3x 6,35/9,52 + 1x 6,35/12,7	3x 6,35/9,52 + 1x 6,35/12,7	4x 6,35/9,52 + 1x 6,35/12,7
Total length of	installation	m	40	60	80	80	80
Max. length of single indoor u	installation for 1 nit	m	25	30	35	35	35
Max. level diffe	rence	m	15	15	15	15	15
Electric power	supply	V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1
Circuit breaker	/fuse	А	16	20	25	25	25
Power supply I	ines	# of wires	3x2,5	3x2,5	3x4,0	3x4,0	3x4,0
Control lines		x mm²	4x1,5	4x1,5	4x1,5	4x1,5	4x1,5
Factory amour refrigerant	nt of	kg	1,25	1,72	2,1	2,1	2,4
Additional amo	punt	g/m	12 (above 15 m installation)	12 (above 22,5 m installation)	12 (above 30 m installation)	12 (above 30 m installation)	12 (above 37,5 r installation)

indoor units



KTI-18HWB32X

\A/IEI	AS ST	LVVIL	NDD

MODEL			KWX-09HRBI	KWX-12HRBI	KWX-18HRBI	KWX-24HRBI
Power supply		V/Hz/Ph	220÷240,50,1	220÷240/50/1	220÷240/50/1	220÷240/50/1
	cooling	kW	2,6	3,5	5,3	7,0
apacity	heating	kW	2,9	3,8	5,6	7,3
flow		m³/h	466/360/325	540/430/314	840/680/540	980/817/662
nd pressure level	high/medium/low	dB(A)	38,5/32/25/21	40,5/34,5/25/22	44/37/30/25	44,5/42/34,5/28
able static pressure	factory / max.	Pa				
. "	net	mm	805/285/194	805/285/194	957/302/213	1040/327/220
ensions: w/h/d	transport	mm	870/365/270	870/365/270	1035/380/295	1120/310/405
1.	net	kg	7,6	7,6	10,0	12,3
ght	transport	kg	9,7	9,7	13,0	15,8
Р	liquid	mm	6,35	6,35	6,35	9,52
e diameter	gas	mm	9,52	9,52	12,7	15,9
PRICE EUR			297	320	430	530

KCA3I-09HRB32 | KCA3U 12 | 18 HRB32X

MODEL			KCA3I-09HRB32	KCA3U-12HRB32X	KCA3U-18HRB32X
Power supply		V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1
0	cooling	kW	2,6	3,5	5,3
Capacity	heating	kW	2,8	4,4	5,4
Air flow		m³/h	580/500/450	617/504/416	720/625/540
Sound pressure level	high/medium/low	dB(A)	38/33/29	41/36/33	42,5/39/35,5
Discounting of the second	net	mm	570/260/570	570/260/570	570/260/570
Dimensions: w/h/d indoor unit	transport	mm	662/317/662	662/317/662	662/317/662
Discounting of the second	net	mm	647/50/647	647/50/647	647/50/647
Dimensions: w/h/d panel	transport	mm	715/123/715	715/123/715	715/123/715
\\/-i= -+ i=	net	kg	14,5/2,5	16/2,5	16/2,5
Weight indoor unit /panel	transport	kg	17,3/4,5	21,4/4,5	21,4/4,5
D: 1: .	liquid	mm	6,35	6,35	6,35
Pipe diameter	gas	mm	9,52	9,52	12,7
NET PRICE EUR			470	580	700

configuration table of **indoor units**

The table shows the possible options for connecting the indoor units of different power capacities to the individual outdoor units. The numbers in the table correspond to the power of the units expressed in thousands of BTU/h.

K20C-18HFN32

K30E-27HFN32	K3	OE:	-27	7HF	-Ν	132
--------------	----	-----	-----	-----	----	-----

1 UNIT	2 UNITS	
9	9+9	12+12
12	9+12	
18	9+18	

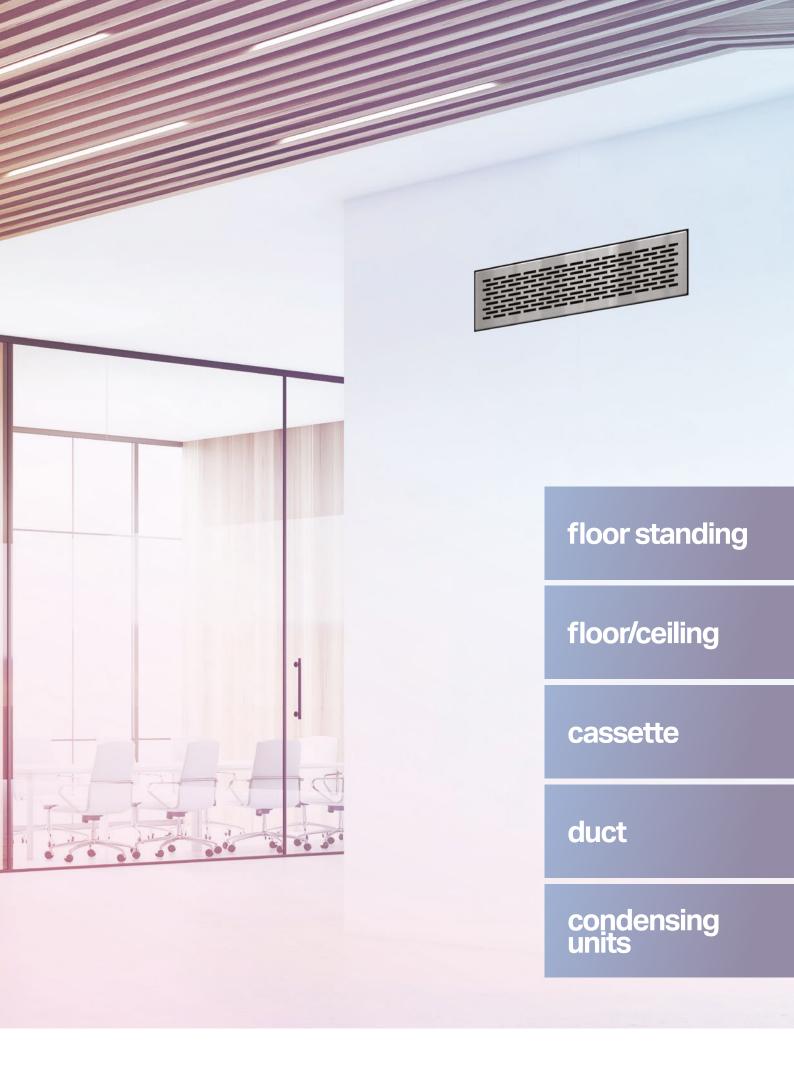
1 UNIT	2 UNITS		3 UNITS	
9	9+9	12+12	9+9+9	9+12+12
12	9+12	12+18	9+9+12	9+12+18
18	9+18	18+18	9+9+18	12+12+12

K40E-28HFN32

1 UNIT	2 UNITS		3 UNITS		4 UNITS
9	9+9	12+12	9+9+9	9+12+12	9+9+9+9
12	9+12	12+18	9+9+12		9+9+9+12
18	9+18	18+18	9+9+18		
24	9+24	12+24	12+12+12		

K40B-36HFN32

1 UNIT	2 UNITS		3 UNITS			4 UNITS	
9	9+9	18+18	9+9+9	9+18+18	24+9+9	9+9+9+9	9+12+12+18
12	9+12	12+24	9+9+12	9+12+24	24+9+12	9+9+9+12	12+12+12+12
18	9+18	24+9	9+9+18	12+12+12	24+12+12	9+9+9+18	
24	9+24	24+12	9+9+24	12+12+18		9+9+12+12	
	12+12	24+18	9+12+12	12+18+18		9+9+12+18	
	12+18	24+24	9+12+18	12+12+24		9+12+12+12	


K50D-42HFN32

1 UNIT	2 UNITS			3 UNITS			
9	9+9	12+12	18+24	9+9+9	9+12+12	12+12+12	18+18+18
12	9+12	12+18	24+24	9+9+12	9+12+18	12+12+18	24+9+18
18	9+18	12+24		9+9+18	9+12+24	12+12+24	24+12+18
24	9+24	18+18		9+9+24	9+18+18	12+18+18	
4 UNITS				5 UNITS			
9+9+9+9		9+9+12+18	9+12+12+18	9+9+9+9+9		9+9+9+12+1	8
9+9+9+12		9+9+12+24	9+12+12+24	9+9+9+9+12		9+9+12+12+	·12
9+9+9+18		9+9+18+18	12+12+12+12	9+9+9+9+18		9+12+12+12	!+12
9+9+9+24		9+9+18+24	12+12+12+18	9+9+9+9+24			
9+9+12+12		9+12+12+12	12+12+12+24	9+9+9+12+1	2		

commercial air conditioners

The air-conditioning systems for commercial applications combine efficiency with a wide range of solutions dedicated to offices, conference rooms, hotels, or other rooms requiring efficient air conditioning.

Depending on the area and purpose of the facility, as well as the installation possibilities, we can apply floor, floor/ceiling, cassette, duct, or condensing units.

kfs

floor standing air conditioners

KFS-50HRFI

Floor standing conditioners are used in large areas, such as shops, showrooms, restaurants, and airport halls.

The KFS air conditioner is distinguished by its elegant and intuitive control panel, and functional wireless remote control combined with a temperature sensor, and its energy-saving technology, allowing the device to operate in the economy mode. Comfort of use is provided by the various practical functions of the air conditioner, such as 3D airflow for uniform temperature distribution in the room, and a temperature sensor built into the remote control, thanks to which the temperature measurement is made at the location of the user, and the operation of the air conditioner is adjusted to the actual conditions in the room. The appliance can be used in rooms with a total area of up to approx. 120-140 m².

perfect solution for large air conditioning space

UNIT FUNCTIONS

Timer

supply control

3D air flow

Wide range of tempe-ratures

Sleep function

Operation at Temperature low outdoor temperature

sensor in remote control unit

Self--diagnosis

Filter with C vitamin

MODEL	jedn. wewn.		KFS-50HRFI
MODEL	jedn. zewn.	KFS-50HRFO	
Capacity	cooling	kW	14,1(5,0÷15,5)
average (min÷max)	heating	kW	16,1(4,4÷18,5)
Energy class	cooling/heating		A++/A+
SEER	average	W/W	6,1
SCOP	average	W/W	4,0
Power input	cooling	W	4950(1158÷5909)
average (min÷max)	heating	W	5200(1022÷6200)
Operation current	cooling	А	8,00(1,77÷9,97)
average (min÷max)	heating	А	8,50(1,6÷10,54)
A is flow	indoor	m³/h	2413/2222/2027
Air flow	outdoor	m³/h	7500
Operating temperature	indoor	°C	17÷32/0÷30
cooling/heating	outdoor	°C	-15÷50/-15÷24
0 1 1	indoor	dB(A)	55/53/51,5
Sound pressure level	outdoor	dB(A)	65
NI_+ -1::::	indoor	mm	629/1935/456
Net dimensions w/h/d	outdoor	mm	952/1333/415
Transport dimensions	indoor	mm	750/2055/575
w/h/d	outdoor	mm	1095/1480/495
NI-+:	indoor	kg	58,4
Net weight	outdoor	kg	106,7
Transport waight	indoor	kg	77,1
Transport weight	outdoor	kg	119,9
Pipe diameter: liquid/gas		mm	9,52/15,9
Max. length of installation		m	65
Max. level difference		m	30
Dower supply	indoor	V/Hz/Ph	220÷240/50/1
Power supply	outdoor	V/Hz/Ph	380÷420/50/3
Circuit breaker/fuse	outdoor	А	16
Dower aupply lines	indoor	# of wires x mm ²	3x1,5
Power supply lines	outdoor	# of wires x mm ²	5x2,5
Control lines	ind. outd.	# of wires x mm ²	2x0,5 shielded
Factory amount of refrigerant	up to 5 rm	kg	2,8
Additional amount of refrigerant	over 5 rm	g/m	24
Ext. diameter of the condensate drain		mm	25

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RG66A1(B2)

WIRELESS CONTROL UNIT RG66A1 (OPTION)

WIRELESS CONTROL UNIT RG57 (OPTION)

kue

floor/ceiling air conditioner

KUE 18 | 24 | 36 | 48 | 55 HRB32

Universal air conditioners that are ideal for rooms without suspended ceilings.

They are characterized by a three-dimensional supply of air through the automatic control of the louvers, which ensures optimal air circulation and uniform temperature distribution. The timer gives the possibility to set the time of automatic switching on and off the air conditioner. To minimize the feeling of an unpleasant, cool airflow, the air conditioner starts in heating mode and automatically reduces the fan speed until the heat exchanger is heated.

it will work effectively in office, as well as in house

UNIT FUNCTIONS

restart

Port on-off

3D air flow

Emergency

use

control

Memory of louvers settings

Fresh air

Wi-Fi

control

Customized remote control unit

Alarm port

Twin combination Two-sided installation

Temperature sensor in remote control unit

8°C heating function

Built-in condensate pump

Central controller

KAISAI AIR CONDITIONING SYSTEM

			KUE-18HRB32X	KUE-24HRB32	KUE-36HRB32	KUE-36HRB32	KUE-48HRB32	KUE-55HRB32
MODEL			KOB30- -18HFN32X	KOCA30U- -24HFN32	KOD30U- -36HFJ32	KOD30U- -36HFN32	KOE30U- -48HFN32	KOE30U- -55HFN32
Capacity	cooling	kW	5,3(2,7÷5,6)	7,0(3,2÷8,3)	10,6(3,9÷12,0)	10,6(3,9÷12,0)	14,1(5,0÷15,1)	15,8(5,3÷17,0)
average (min÷max)	heating	kW	5,6(2,4÷6,3)	7,6(2,7÷8,7)	11,1(2,8÷13,5)	11,1(2,8÷14,0)	16,1(3,8÷18,1)	18,2(4,4÷19,6)
Energy class	cooling/h	neating	A++/A+	A++/A+	A++/A+	A++/A+	A++/A+	A++/A+
SEER	average	W/W	6,1	6,1	6,1	6,1	6,1	6,1
SCOP	average	W/W	4,0	4,0	4,0	4,0	4,0	4,0
Power input	cooling	W	1633(670÷1850)	2190(480÷2930)	3800(875÷4500)	3750(870÷4500)	5500(1158÷6003)	6063(1227÷6496)
average (min÷max)	heating	W	1500(540÷1640)	2050(500÷2850)	3040(730÷4550)	3000(730÷4885)	5050(1026÷6200)	6036(1022÷6546)
Operation current	cooling	А	7,2(3,2÷8,2)	10,0(2,1÷13,1)	16,7(4,1÷19,6)	5,8(1,2÷8,2)	9,1(1,8÷9,8)	10,5(1,9÷11,3)
average (min÷max)	heating	А	6,6(2,7÷7,3)	9,5(2,2÷12,7)	14,0(2,8÷19,8)	4,8(1,2÷8,3)	8,14(1,6÷10,3)	9,9(1,6÷11,5)
A: (I	indoor	m³/h	902/786/677	1208/1066/853	2160/1844/1431	2160/1844/1431	2329/1930/1417	2454/1834/1426
Air flow	outdoor	m³/h	2000	2700	4000	4000	7500	7500
Operating temperature	indoor	°C	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30
cooling/heating	outdoor	°C	-15+50/-15+24	-15+50/-15+24	-15+50/-15+24	-15+50/-15+24	-15+50/,-15+24	-15+50/-15+24
0 1 1	indoor	dB(A)	41,5/38,5/34,5	50/46/41	51/47/42	51/47/42	54/50/46	54/47/42
Sound pressure level	outdoor	dB(A)	55	62	65	64	66	66
.	indoor	mm	1068/675/235	1068/675/235	1650/675/235	1650/675/235	1650/675/235	1650/675/235
Net dimensions w/h/d	outdoor	mm	800/554/333	845/702/363	946/810/410	946/810/410	952/1333/415	952/1333/415
Transport dimensions	indoor	mm	1145/755/313	1145/755/313	1725/755/313	1725/755/313	1725/755/313	1725/755/313
w/h/d	outdoor	mm	920/625/390	965/775/395	1090/885/500	1090/885/495	1095/1480/500	1095/1480/500
NI	indoor	kg	26,6	26,8	39,0	39,0	41,2	41,4
Net weight	outdoor	kg	33,7	49,4	66,8	81,5	106,7	111,3
-	indoor	kg	31,8	31,9	45,0	45,0	47,6	47,8
Transport weight	outdoor	kg	36,6	52,8	73,4	87,0	119,9	124,3
Pipe diameter: liquid/gas		mm	6,35/12,7	9,52/15,9	9,52/15,9	9,52/15,9	9,52/15,9	9,52/15,9
Max. length of installation		m	30	50	65	65	65	65
Max. level difference		m	20	25	30	30	30	30
Б .	indoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1
Power supply	outdoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷420/50/3	380÷420/50/3	380÷420/50/3	380÷420/50/3
Circuit breaker/fuse	outdoor	А	16	20	25	16	16	16
5	indoor		3x1,5	3x1,5	3x1,5	3x1,5	3x1,5	3x1,5
Power supply lines	outdoor	# of wires	3x2,5	3x2,5	3x4,0	5x2,5	5x2,5	5x2,5
Control lines	ind. outd.	· AHIIII-	4x1,5	2x0,5 shielded	2x0,5 shielded	2x0,5 shielded	2x0,5 shielded	2x0,5 shielded
Factory amount of refrigerant	up to 5 rm	kg	1,15	1,5	2,4	2,4	2,8	2,95
Additional amount of refrigera	nt over 5 rm	g/m	12	24	24	24	24	24
Ext. diameter of the condens	ate drain	mm	25	25	25	25	25	25

 ${\it KUE-xxHRB air conditioners are technically comparable to KUE-xxHRF, they differ in a wireless controller.}$

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RG66A1

WIRED CONTROLLER KJR12B (OPTION)

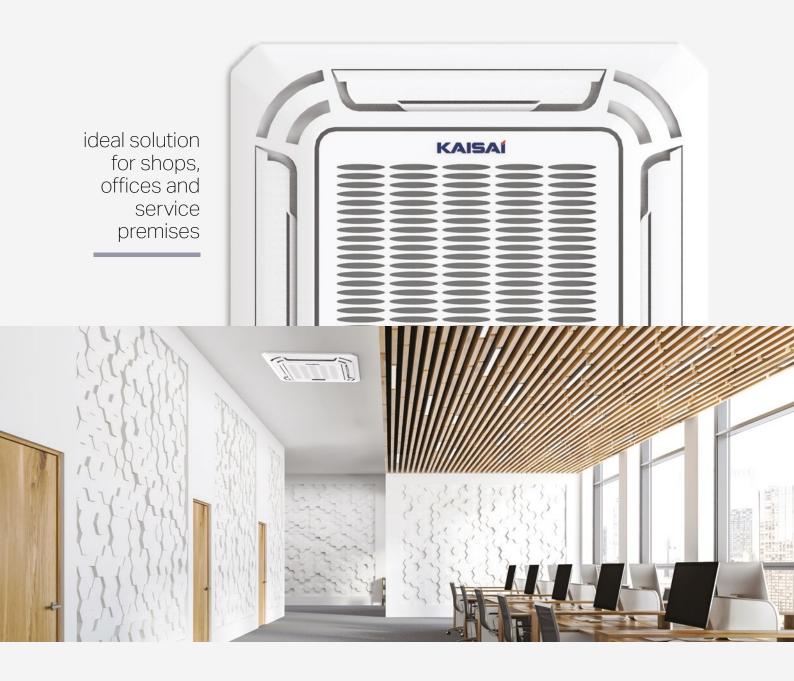
WIRED CONTROLLER KJR-120X2 (OPTION)

CENTRAL CONTROLLER CCM03 (OPTION)

kca

compact cassette air conditioners

KCA3U 12 I 18 HRB32X


Cassette air conditioners are perfect for offices, conference rooms or other large rooms that require efficient air conditioning.

Compact cassette air conditioners are equipped with an indoor unit with a quiet fan and a peripheral air supply. They are characterized by high efficiency and high comfort of use.

They have a function of supplying fresh air and the possibility of connecting an additional air supply duct to the adjacent room.

UNIT FUNCTIONS

Alarm port

Port on-off OPTION

OPTION

Customized remote control

Selfdiagnosis

Mono and multi

360° air flow

Built-in condensate pump

Temperature sensor in remote control unit

8°C heating function

Central controller

Wi-Fi control

unit

MODEL	indoor unit		KCA3U-12HRB32X	KCA3U-18HRB32X	
MODEL	outdoor unit		KOB30-12HFN32X	KOB30-18HFN32X	
Capacity	cooling	kW	3,5(1,52÷5,28)	5,3(2,9÷5,74)	
average (min÷max)	heating	kW	4,4(1,03÷5,57)	5,4(2,37÷6,10)	
Energy class	cooling/heating		A++/A++	A++/A+	
SEER	average	W/W	7,8	6,1	
SCOP	average	W/W	4,6	4,0	
Power input	cooling	W	850(350÷1600)	1633(720÷1860)	
average (min÷max)	heating	W	1100(310÷1800)	1460(700÷1930)	
Operation current	cooling	А	3,8(1,6÷7,1)	7,2(3,2÷8,2)	
average (min÷max)	heating	А	5,0(1,4÷7,9)	6,4(3,1÷8,5)	
A' (I	indoor	m³/h	617/504/416	720/625/540	
Air flow	outdoor	m³/h	2000	2000	
Operating temperature	indoor	°C	17÷32/0÷30	17÷32/0÷30	
cooling/heating	outdoor	°C	-15÷50/-15÷24	-15÷50/-15÷24	
	indoor	dB(A)	41/36/33	42,5/39/35,5	
Sound pressure level	outdoor	dB(A)	55	55	
	indoor	mm	570/260/570	570/260/570	
Net dimensions w/h/d	outdoor	mm	800/554/333	800/554/333	
	panel	mm	647/50/647	647/50/647	
	indoor	mm	662/317/662	662/317/662	
Transport dimensions w/h/d	outdoor	mm	920/615/390	920/615/390	
WING	panel	mm	715/123/715	715/123/715	
	indoor	kg	16/2,5	16/2,5	
Net weight	outdoor	kg	34,7	33,7	
-	indoor	kg	21,4/4,5	21,4/4,5	
Transport weight	outdoor	kg	37,5	36,6	
Pipe diameter: liquid/gas		mm	6,35/9,52	6,35/12,7	
Max. length of installation		m	25	30	
Max. level difference		m	10	20	
Dower gunnly	indoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	
Power supply	outdoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	
Circuit breaker/fuse	outdoor	А	16	16	
Dowar aupply lines	indoor	# of wires x mm ²	=	-	
Power supply lines	outdoor	# of wires x mm ²	3x2,5	3x2,5	
Control lines	indoor-utdoor	# of wires x mm ²	5x1,5	4x1,5	
Factory amount of refrigerant	up to 5 rm	kg	0,87	1,15	
Additional amount of refrigerant over 5 rm		g/m	12	12	
Ext. diameter of the condensate of	drain	mm	25	25	

 ${\sf KCA3U-xxHRB}\ air\ conditioners\ are\ technically\ comparable\ to\ {\sf KCA3U-xxHRF}, they\ differ\ in\ a\ wireless\ controller.$

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RG66A1

WIRED CONTROLLER KJR12B (OPTION)

WIRED CONTROLLER KJR-120X2 (OPTION)

CENTRAL
CONTROLLER
CCM03
(OPTION)

KCC

super slim cassette air conditioners

KCD 24 | 36 | 48 | 55 HRB32

Universal air conditioners, which are ideal for use in rooms with suspended ceilings with particularly low technical space.

Cassette air conditioners are equipped with additional supply air gaps in the panel. Thanks to this design, the 360° fan operation can provide even better air distribution in an air-conditioned room.

Super Slim cassette units can work in Twin system, making it easier to maintain uniform temperature in the room.

UNIT FUNCTIONS

Indication of refrigerant leakage

Emergency use

at low outdoor temperature.

Fresh air

Port on-off OPTION

Alarm port OPTION

OPTION

Customized remote control unit

Selfdiagnosis

Mono and multi

360° air flow

Built-in condensate pump

remote control unit

Central controller

Wi-Fi control

MODEL	indoor unit		KCD-24HRB32	KCD-36HRB32	KCD-36HRB32	KCD-48HRB32	KCD-55HRB32
MODEL	outdoor unit		KOCA30U- -24HFN32	KOD30U- -36HFJ32	KOD30U- -36HFN32	KOE30U -48HFN32	KOE30U- -55HFN32
Capacity	cooling	kW	7,0(3,2÷8,2)	10,6(4,0÷12,0)	10,6(4,0÷12,0)	14,0(4,8÷14,6)	15,5(5,3÷16,7)
average (min÷max)	heating	kW	7,6(2,4÷8,6)	11,1(2,9÷13,5)	11,1(2,9÷14,1)	16,1(3,9÷16,8)	18,2(4,4÷19,3)
Energy class	cooling/heating		A++/A+	A++/A+	A++/A+	A++/A+	A++/A+
SEER	average	W/W	6,1	6,1	6,1	6,1	6,1
SCOP	average	W/W	4,0	4,0	4,0	4,0	4,0
Power input	cooling	W	2190(480÷2850)	3750(890÷4500)	3950(890÷4500)	5130(1174÷5602)	5951(1147÷6682
average (min÷max)	heating	W	2050(500÷2880)	2993(720÷4450)	3000(720÷4750)	5050(987÷5378)	6036(1022÷6448
Operation current	cooling	А	9,5(2,1÷12,4)	16,3(3,9÷19,6)	6,6(3,9÷8,2)	8,3(1,8÷9,3)	9,8(1,8÷11,6)
average (min÷max)	heating	А	8,9(2,2÷12,5)	13,0(3,2÷19,4)	5,0(3,2÷8,3)	8,2(1,6÷8,8)	9,9(1,6÷11,2)
	indoor	m³/h	1378/1200/1032	1775/1620/1438	1775/1620/1438	1715/1568/1381	1970/1737/1537
Air flow	outdoor	m³/h	2700	4000	4000	7500	7500
Operating temperatu-	indoor	°C	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30
re cooling/heating	outdoor	°C	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24
	indoor	dB(A)	47/43/40	52/49/46	52/49/46	52/50/49	53/50/48
Sound pressure level	outdoor	dB(A)	62	65	64	66	66
	indoor	mm	840/245/840	840/245/840	840/245/840	840/287/840	840/287/840
Net dimensions w/h/d	outdoor	mm	950/55/950	950/55/950	950/55/950	950/55/950	950/55/950
	panel	mm	845/702/363	946/810/410	946/810/410	952/1333/415	952/1333/415
	indoor	mm	900/265/900	900/265/900	900/265/900	900/292/900	900/292/900
Transport dimensions	outdoor	mm	1035/90/1035	1035/90/1035	1035/90/1035	1035/90/1035	1035/90/1035
w/h/d	panel	mm	965/775/395	1090/885/500	1090/885/495	1095/1480/500	1095/1480/500
	indoor	kg	23/5	27.5/ 5	27.5/5	29/5	29.7 /5
Net weight	outdoor	kg	49.4	66.8	81.5	106.7	111,3
	indoor	kg	27/8	31/8	31/8	32.7 /8	33.4/8
Transport weight	outdoor	kg	52.8	73.4	87.0	119.9	124.3
Pipe diameter: liquid/ga		mm	9,52/15,9	9,52/15,9	9,52/15,9	9,52/15,9	9,52/15,9
Max. length of installati		m	50	65	65	65	65
Max. level difference		m	25	30	30	30	30
ani iovoi aiirororioo	indoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1
Power supply	outdoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	380÷420/50/3	380÷420/50/3	380÷420/50/3
Circuit breaker/fuse	outdoor	Α	20	25	16	16	16
Circuit broakerrace	indoor		3x1,5	3x1,5	3x1,5	3x1,5	3x1,5
Power supply lines	outdoor	# of wires	3x2,5	3x4.0	5x2.5	5x2.5	5x2.5
Control lines	indoor outdoor	x mm²	2x0,5 shielded	2x0,5 shielded	2x0.5 shielded	2x0,5shielded	2x0,5 shielded
Factory amount of refrig		kg	1,5	2,4	2,4	2.8	2,95
	,		24	24	24	24	24
Additional amount of refrigerant over 5 rm g/m Ext. diameter of the condensate drain mm			32	32	32	32	32

 ${\sf KCD-xxHRB}\ air\ conditioners\ are\ technically\ comparable\ to\ {\sf KCD-xxHRF}, they\ differ\ in\ a\ wireless\ controller.$

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RG66A1

WIRED CONTROLLER KJR12B (OPTION)

WIRED CONTROLLER KJR-120X2 (OPTION)

CENTRAL
CONTROLLER
CCM03
(OPTION)

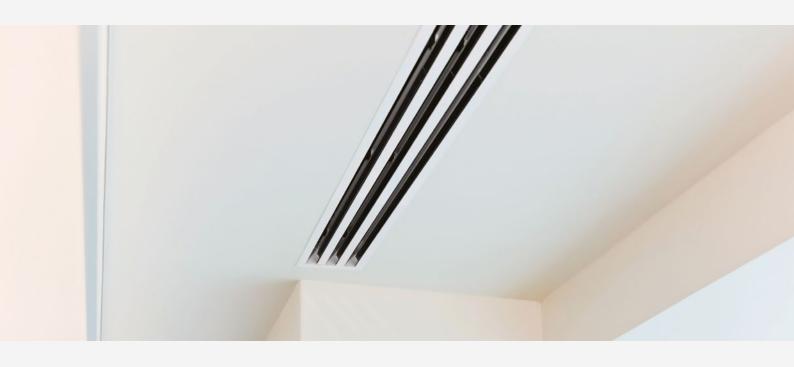
A++

R32

slim duct air conditioners

KTI 18 | 24 | 36 | 48 | 55 HWB32

Duct air conditioners are suitable for use in large objects. Their advantage is the ability to distribute air freely through ducts and diffusers in the entire room.


The Slim series of duct air conditioners is characterized by a significant available static pressure – 160 Pa with low noise level. The unit has a lower height than a standard duct unit, so that it can be installed in a small space in the suspended ceiling.

Thanks to the use of modern technology, the air conditioner automatically adjusts the static pressure and maintains a constant flow of air.

efficient and discrete unit for home and office

UNIT FUNCTIONS

control

compensation

Indication of refrigerant leakage

at low outdoor temperature.

Port on-off

Alarm port

Timer

Built-in condensate pump

Temperature sensor in remote control unit

Central controller

Wi-Fi control

Customized remote control unit

	indoor un	it	KTI-18HWB32X	KTI-24HWB32	KTI-36HWB32	KTI-36HWB32	KTI-48HWB32	KTI-55HWB32
MODEL	outdoor u	ınit	KOB30- -18HFN32X	KOCA30U- -24HFN32	KOD30U- -36HFJ32	KOD30U- -36HFN32	KOE30U- -48HFN32	KOE30U- -55HFN32
Capacity	cooling	kW	5,3(2,6÷5,7)	7,0(3,3÷8,2)	10,6(4,0÷12,0)	10,6(4,0÷12,0)	14,1(4,3÷15,2)	15,2(5,9÷17,3)
average (min÷max)	heating	kW	5,6(2,2÷6,2)	7,6(2,7÷8,7)	11,1(2,8÷13,2)	11,1(2,8÷13,2)	16,1(3,7÷18,0)	18,2(4,7÷20,5)
Energy class	cooling/h	eating	A++/A+	A++/A+	A++/A+	A++/A+	A++/A+	A++/A+
SEER	average	W/W	6,1	6,1	6,1	6,1	6,1	6,1
SCOP	average	W/W	4,0	4,0	4,0	4,0	4,0	4,0
Power input	cooling	W	1633(710÷1900)	2190(480÷2850)	4000(902÷4900)	4100(890÷4890)	5150(1170÷5699)	5423(1274÷6651
average (min÷max)	heating	W	1580(740÷1760)	2050(500÷2880)	3100(800÷4640)	3000(780÷4665)	4280(948÷5824)	5329(1042÷6034
Operation current	cooling	А	7,2(3,2÷8,3)	9,5(2,1÷12,4)	17,5(4,2÷19,6)	6,5(1,4÷8,2)	8,3(1,8÷9,4)	8,9(2,0÷11,6)
average (min÷max)	heating	А	7,0(3,3÷7,7)	8,9(2,2÷12,5)	12,9(3,6÷18,4)	4,7(1,3÷7,4)	6,8(1,5÷9,2)	8,8(1,6÷10,5)
A: 6	indoor	m³/h	880/650/350	1248/1054/839	1400/1150/750	1400/1150/750	2400/2040/1680	2600/2210/1820
Air flow	outdoor	m³/h	2000	2700	4000	4000	7500	7500
Available static pressur	e	Pa	25/100	25/160	37/160	37/160	50/160	50/160
Operating temp.	indoor	°C	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30	17÷32/0÷30
cooling/heating	outdoor	°C	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24
	indoor	dB(A)	41,5/38/33	42/40/38	47/43/40	47/43/40	51/50/48	54/52/51
Static pressure level	outdoor	dB(A)	55	62	65	64	66	66
N	indoor	mm	880/210/674	1100/249/774	1360/249/774	1360/249/774	1200/300/874	1200/300/874
Net dimensions w/h/d	outdoor	mm	800/554/333	845/702/363	946/810/410	946/810/410	952/1333/415	952/1333/415
Transport	indoor	mm	1070/280/725	1305/305/805	1570/305/805	1570/305/805	1405/355/915	1405/355/915
dimensions w/h/d	outdoor	mm	920/625/390	965/775/395	1090/885/500	1090/885/495	1095/1480/500	1095/1480/500
N	indoor	kg	24,3	31,5	40,5	40,5	47,6	47,6
Net weight	outdoor	kg	33,7	49,4	66,8	81,5	106,7	111,3
Toronomiator	indoor	kg	29,6	38,9	48,5	48,5	55,8	55,8
Transport weight	outdoor	kg	36,6	52,8	73,4	87,0	119,9	124,3
Pipe diameter: liquid/ga	S	mm	6,35/12,7	9,52/15,9	9,52/15,9	9,52/15,9	9,52/15,9	9,52/15,9
Max. length of installation	on	m	30	50	65	65	65	65
Max. level difference		m	20	25	30	30	30	30
Dower ownshi	indoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1	220÷240/50/1
Power supply	outdoor	V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1	380÷420/50/3	380÷420/50/3	380÷420/50/3
Circuit breaker/fuse	outdoor	А	16	20	25	16	16	16
Danier and the co	indoor		3x1,5	3x1,5	3x1,5	3x1,5	3x1,5	3x1,5
Power supply lines	outdoor	# of wires x	3x2,5	3x2,5	3x4,0	5x2,5	5x2,5	5x2,5
Control lines	ind. outd.	mm²	4x1,5	2x0,5 shielded	2x0,5 shielded	2x0,5 shielded	2x0,5 shielded	2x0,5 shielded
Factory amount of refrigeran	tupto 5 rm	kg	1,15	1,5	2,4	2,4	2,8	2,95
Additional amount of refriger	ant over 5 rm	g/m	12	24	24	24	24	24
Ext. diameter of the conde	ensate drain	mm	25	25	25	25	25	25

 $\label{eq:KTI-xxHWB} \textbf{air conditioners are technically comparable to KTI-xxHWF, they differ in wired controller.}$

ACCESSORIES AND CONTROLLERS

WIRED CONTROLLER KJR-120X2

WIRELESS CONTROL UNIT **RG57**

WIRED CONTROLLER KJR12B (OPTION)

CENTRAL CONTROLLER CCM03

condensing units

KOB30U 12 I 18 HFN32X • KOCA30U 24 HFN32 KOD30U 36 HFN32 • KOD30U 36 HFJ32 KOE30U 48 I 55 HFN32

Inverter condensing units are equipped with a control module that enables the connection of a universal outdoor unit to a freon heat exchanger in the air handling unit.

Such solution makes it possible to control the efficiency of the condensing unit by means of a 0-10V DC signal sent from the air handling unit control system. Both cooling and heating operation are possible. The units have built-in expansion valves, so that no additional refrigeration fittings are needed.

Kaisai condensing units may only be used with AHUs equipped with protection devices suitable for R32 flammability characteristic.

condensing units

TECHNICAL SPECIFICATION

MODEL			KOB30-12HFN32X	KOB30-18HFN32X	KOCA30U-24HFN32
Capacity	cooling	kW	3,5(1,5÷5,3)	5,3(2,7÷5,6)	7,0(3,2÷8,3)
average (min÷max)	heating	kW	4,4(1,0÷5,6)	5,6(2,4÷6,3)	7,6(2,7÷8,7)
Energy class	cooling/heating		A++/A++	A++/A+	A++/A+
SEER	average	W/W	7,8	6,1	6,1
SCOP	average	W/W	4,6	4,0	4,0
Power input	cooling	W	850(350÷1600)	1633(670÷1850)	2190(480÷2930)
average (min÷max)	heating	W	1100(310÷1800)	1500(540÷1640)	2050(500÷2850)
Operation current	cooling	А	3,8(1,6÷7,1)	7,2(3,2÷8,2)	10,0(2,1÷13,1)
average (min÷max)	heating	Α	5,0(1,4÷7,9)	6,6(2,7÷7,3)	9,5(2,2÷12,7)
Air flow		m³/h	2000	2000	2700
Operating temperature	cooling/heating	°C	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24
Sound pressure level		dB(A)	55	55	62
Net dimensions w/h/d		mm	800/554/333	800/554/333	845/702/363
Transport dimensions w/h/d		mm	920/625/390	920/625/390	965/775/395
Net weight		kg	34,7	33,7	49,4
Transport weight		kg	37,5	36,6	52,8
Pipe diameter: liquid/gas		mm	6,35/9,52	6,35/12,7	9,52/15,9
Total length of installation		m	25	30	50
Max. level difference		m	10	20	25
Power supply		V/Hz/Ph	220÷240/50/1	220÷240/50/1	220÷240/50/1
Circuit breaker/fuse		А	10	16	20
Power supply lines		# of wires x mm ²	3x2,5	3x2,5	3x2,5
Factory amount of refrigerant	< 5 rm	kg	0,87	1,15	1,5
Additional amount of refrigerant	> 5 rm	g/m	12	12	24

MODEL			KOD30U-36HFJ32	KOD30U-36HFN32	KOE30U-48HFN32	KOE30U-55HFN32
Capacity	cooling	kW	10,6(3,9÷12,0)	10,6(3,9÷12,0)	14,1(5,0÷15,1)	15,8(5,3÷17,0)
average (min÷max)	heating	kW	11,1(2,8÷13,5)	11,1(2,8÷14,0)	16,1(3,8÷18,1)	18,2(4,4÷19,6)
Energy class	cooling/heating		A++/A+	A++/A+	A+/A+	A+/A+
SEER	average	W/W	6,1	6,1	6,1	6,1
SCOP	average	W/W	4,0	4,0	4,0	4,0
Power input	cooling	W	3800(875÷4500)	3750(870÷4500)	5500(1158÷6003)	6063(1227÷6496)
average (min÷max)	heating	W	3040(730÷4550)	3000(730÷4885)	5050(1026÷6200)	6036(1022÷6546)
Operation current	cooling	А	16,7(4,1÷19,6)	5,8(1,2÷8,2)	9,1(1,8÷9,8)	10,5(1,9÷11,3)
average (min÷max)	heating	А	14,0(2,8÷19,8)	4,8(1,2÷8,3)	8,14(1,6÷10,3)	9,9(1,6÷11,5)
Air flow		m³/h	4000	4000	7500	7500
Operating temperature	cooling/heating	°C	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24	-15÷50/-15÷24
Sound pressure level		dB(A)	65	64	66	66
Net dimensions w/h/d		mm	946/810/410	946/810/410	952/1333/415	952/1333/415
Transport dimensions w/h/d		mm	1090/885/500	1090/885/495	1095/1480/500	1095/1480/500
Net weight		kg	66,8	81,5	106,7	111,3
Transport weight		kg	73,4	87,0	119,9	124,3
Pipe diameter: liquid/gas		mm	9,52/15,9	9,52/15,9	9,52/15,9	9,52/15,9
Total length of installation		m	65	65	65	65
Max. level difference		m	30	30	30	30
Power supply		V/Hz/Ph	220÷240/50/1	380÷420/50/3	380÷420/50/3	380÷420/50/3
Circuit breaker/fuse		А	25	16	16	16
Power supply lines		# of wires	3x4,0	5x2,5	5x2,5	5x2,5
Factory amount of refrigerant	up to 5 rm	kg	2,4	2,4	2,8	2,95
Additional amount of refrigerant	over 5 rm	g/m	24	24	24	24

TECHNICAL SPECIFICATION

KOB30 12 I 18 HFN32X KOCA30U 24 HFN32 KOD30U 36HFJ32 KOD30U 36 HFN32

KOE30U 48 I 55 HFN32

Control modules KMS-8243* & KMS-8140**

^{*} for: KOCA30U 24 HFN32, KOD30U 36HFJ32, KOD30U 36 HFN32, KOE30U 48 I 55 HFN32 units ** for: KOB30-12 I 18HFN32X units

portable air conditioners

Portable air conditioners are perfect for all applications where there is a need to change location or where stationary air-conditioning is not possible.

The 2.6 kW KPC air conditioner has cooling, drying and evaporation functions. It is a perfect solution for rooms with low heat loads, with an area of up to approx. 20 m^2 . The KPPD model with a cooling capacity of 3.5 kW has an additional heating function and can also be used in larger rooms up to approx. 30 m^2 .

Efficient heating: Thanks to its heating function, the KPPD air conditioner is an excellent alternative to traditional electric heating systems, as it provides efficient heating with much lower energy consumption. Thanks to the fan forced air circulation in the room, the desired temperature is reached much faster.

Comfortable sleep: After starting the sleep function, the device will increase (in heating mode) the set temperature by 1°C per hour within 2 hours and the fan will operate at low speed.

Fireproof casing: For the safety of the user, the sealed metal housing of the electrical unit is used to prevent fire in the event of an electrical short circuit.

kpph

The KPPH air conditioner has 3 basic operating modes: cooling, dehumidification and ventilation. Warm air is extracted to the outside through a flexible ventilation pipe.

R290

TECHNICAL SPECIFICATION

MODEL			KPPH-09HRN29
Capacity	cooling	kW	2,6
	heating	kW	=
Energy class	cooling/heating		Α
EER	average	W/W	2,6
COP			-
Dowerinaut	cooling	W	1000
Power input	heating	W	-
0	cooling	А	4,3
Operation current	heating	А	-
Air flow		m³/h	295/195
Operating temperature		°C	17÷35
Sound pressure level		dB(A)	51,9/46,9
Net dimensions w/h/d		mm	355/703/345
Transport dimensions w/h/d		mm	400/880/390
Net weight		kg	25,3
Transport weight		kg	28,1
Electric power supply		V/Hz/Ph	220÷240/50/1
Amount of refrigerant		kg	0,17
Amount of removed moisture		l/h	2,12

ACCESSORIES

WIRELESS CONTROL UNIT **RG51**

The KPC air conditioner has 3 basic operating modes: cooling, dehumidification and ventilation. Thanks to the condensate evaporation function it is not necessary to use a large condensate tank.

TECHNICAL SPECIFICATION

MODEL			KPC-09AK29
Capacity	cooling	kW	2,6
Capacity	heating	kW	=
Energy class	cooling/heating		Α
EER	average	W/W	2,6
COP			-
Dowarianut	cooling	W	1000
Power input	heating	W	-
Operation current	cooling	Α	4,4
Operation current	heating	Α	-
Air flow		m³/h	320/290/260
Operating temperature		°C	18÷35
Sound pressure level		dB(A)	53/51/49
Net dimensions w/h/d		mm	315/770/395
Transport dimensions w/h/d		mm	463/881/358
Net weight		kg	27,0
Transport weight		kg	31,0
Electric power supply		V/Hz/Ph	220÷240/50/1
Refrigerant			R290
Amount of refrigerant		kg	0,22
Amount of removed moisture		l/h	1,43

ACCESSORIES

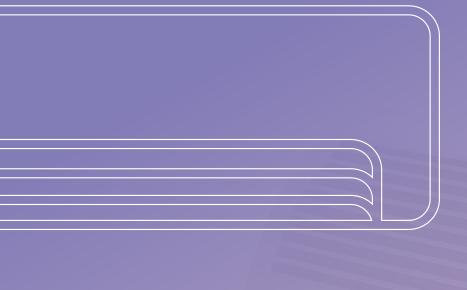
A/A+

kppd

KPPD air conditioner has 4 basic operating modes: cooling, dehumidification, heating and ventilation. Controlling the operation of the air conditioner is facilitated by a wireless remote control as standard equipment.

R290

TECHNICAL SPECIFICATION


MODEL			KPPD-12HRN29
Capacity	cooling	kW	3,5
	heating	kW	2,9
Energy class	cooling/heating		A/A+
EER	average	W/W	2,6
COP			2,8
Power input	cooling	W	1350
Power input	heating	W	1045
Operation current	cooling	Α	5,9
Operation current	heating	А	5,0
Air flow		m³/h	420/370/355
Operating temperature		°C	17÷35
Sound pressure level		dB(A)	54,5/54,3/54,0
Net dimensions w/h/d		mm	467/765/397
Transport dimensions w/h/d		mm	515/880/440
Net weight		kg	34,4
Transport weight		kg	37,8
Electric power supply		V/Hz/Ph	220÷240/50/1
Refrigerant			R290
Amount of refrigerant		kg	0,23
Amount of removed moisture		l/h	3,25

ACCESSORIES

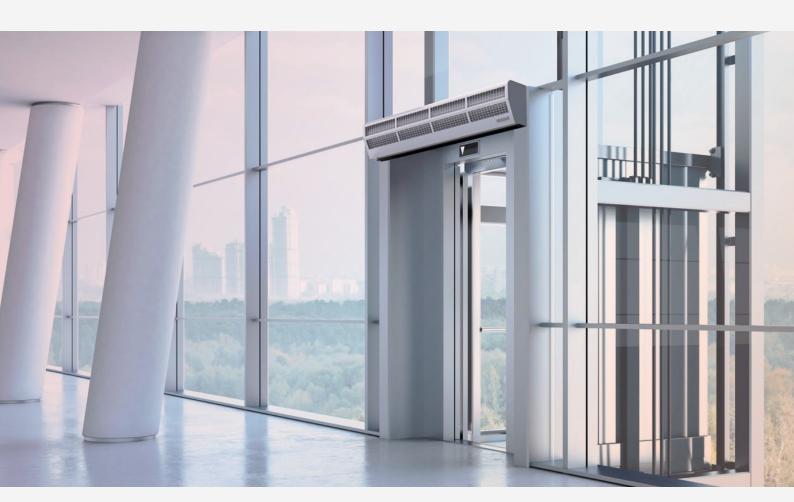
WIRELESS CONTROL UNIT **RG51**

air curtains

Small but functional devices, which allow you to save energy by maintaining a constant temperature and avoiding unpleasant draughts inside the building. Easy to install and use, they provide effective protection against cold air and dirt from outside.

Kaisai air curtains are a guarantee of economy and comfort. Easy remote control, adjustable airflow and an attractive, modern design make the devices a perfect fit in the interior design. The air curtains will discreetly and effectively improve the comfort of customers at the point of sale, while taking care to save energy and eliminate heat loss in the room.

Modern and elegant Kaisai air curtains are perfect for public buildings. Offices, restaurants, cafés, shops and storage areas are places where doors are repeatedly opened and closed during the day, causing heat loss or overheating. In turn, for cafés and restaurants protection against dust and insects will provide even greater comfort of work and use of the premises.



silver

economic and smart installation

The Silver air curtain is a reliable unit with a compact design and quiet operation. Easy to install and operate, the air curtain comes in three sizes, with or without electric heater.

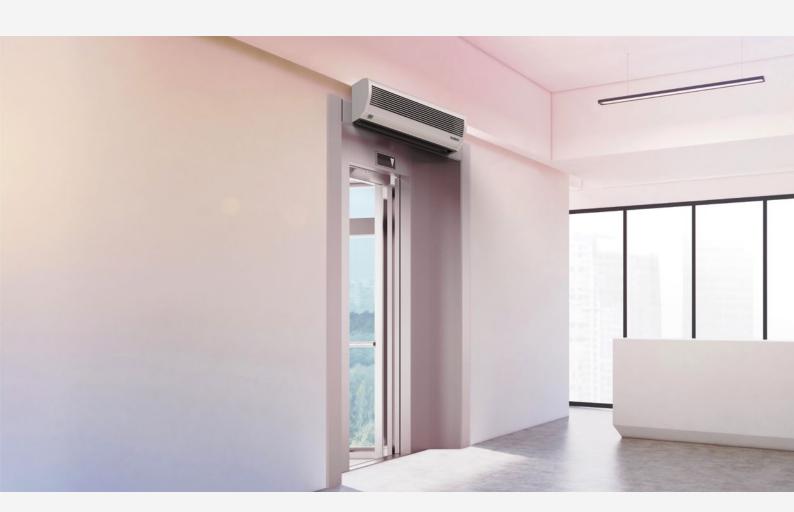
SILVER MODEL WITH HEATER			AG-100H6	AG-150H10	AG-200H14
Voltage/frequency		V~/Hz	400/50	400/50	400/50
Motor power		W	180	230	350
Heater output		kW	6,0	10,0	14,0
A: G	min	m/s	6,5	6,5	6,5
Air flow	max	m/s	6,5	6,5	6,5
A: G	min	m³/h	1100	1400	2100
Air flow	max	m³/h	1300	1900	2600
	min	dB	56	57	59
Noise level	max	dB	58	59	61
Net weight		kg	15,5	21	25
Net dimensions w/d/h	1	mm	1000/180/215	1500/180/215	2000/180/215

SILVER MODEL WITHOUT HEATER			AG-100CX	AG-150CX	AG-200CX
Voltage/frequency		V~/Hz	230/50	230/50	230/50
Motor power		W	180	230	350
A : 61	min	m/s	9	9	9
Air flow	max	m/s	11	11	11
Air flow	min	m³/h	1100	2000	2900
All HOW	max	m³/h	1400	2500	3600
Naiss Is al	min	dB	56	57	59
Noise level	max	dB	58	59	61
Net weight		kg	12	15	22
Net dimensions w/d/h		mm	1000/180/215	1500/180/215	2000/180/215

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RCAC-1

Controller dedicated for Silver and Gold air curtains.


Basic functions: Turning ON/OFF| Fan speed | Operating mode

gold

solution for shops, offices and service premises

The Gold air curtain is a device which is characterized by a strong air stream. Easy to install and operate, the air curtain comes in four sizes with electric heater and three sizes without heater.

GOLD MODEL WITH HEATER			AU-100H3,5	AU-100H6	AU-120H8	AU-150H10	AU-200H14
Voltage/frequency		V~/Hz	230/50	400/50	400/50	400/50	400/50
Motor power		W	180	180	200	230	350
	1	kW	1,75	2,0	2,7	3,3	4,6
Heater output	II	kW	3,5	4,0	5,3	6,7	9,4
	III	kW	=	6	8	10	14
A != £ =	min	m/s	8,5	8,5	8,5	8,5	8,5
Air flow	max	m/s	9,5	9,5	9,5	9,5	9,5
A: G	min	m³/h	1100	1100	1500	1900	2800
Air flow	max	m³/h	1330	1330	1700	2200	3100
N	min	dB	56	56	56	57	59
Noise level	max	dB	57	57	58	59	61
Net weight		kg	14,5	14,5	16,0	18,5	26,5
Net dimensions w/d/h		mm	1000/190/260	1000/190/260	1200/190/260	1500/190/260	2000/190/260

GOLD MODEL WITHOUT HEATER			AU-100CX	AU-150CX	AU-200CX
Voltage/frequency		V~/Hz	230/50	230/50	230/50
Motor power		W	180	230	350
A: ()	min	m/s	9	9	9
Air flow	max	m/s	11	11	11
A: (I	min	m³/h	1300	2000	2900
Air flow	max	m³/h	1600	2500	3600
N	min	dB	55	57	59
Noise level	max	dB	57	59	61
Net weight		kg	10	15	20
Net dimensions w/d/h	1	mm	1000/190/260	1500/190/260	2000/190/260

ACCESSORIES AND CONTROLLERS

WIRELESS CONTROL UNIT RCAC-1

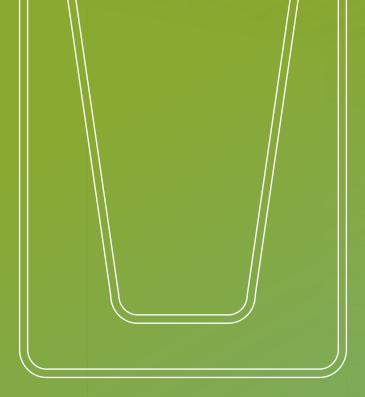
Controller dedicated for Silver and Gold air curtains.

Basic functions: Turning ON/OFF| Fan speed | Operating mode

platinum new

modern design and high performance for demanding customers

The latest elegant version of the Platinum New air curtain can be mounted at a maximum height of 4 m above the floor. The device has a AC motor and an adjustable air stream. The air curtains are available in 3 different sizes with or without a heater. They also offer the possibility to connect a door limit switch to control the operation of the curtain.


PLATINUM NEW M WITH HEATER	ODEL		PTN-090H8	PTN-120H10	PTN-150H12
Voltage/frequency		V~/Hz	400/50	400/50	400/50
Motor power		W	260	380	490
	ı	kW	2,5	3,5	4,0
Heater output	II	kW	5,5	7,0	8,0
	III	kW	8	10	12
Air flow	min	m/s	9	9	9
AITTIOW	max	m/s	11	11	11
Air flow	min	m³/h	1300	1950	2550
AITTIOW	max	m³/h	1600	2400	3150
Naiss Israel	min	dB	59	60	61
Noise level	max	dB	61	62	63
Net weight		kg	15,5	19	22,5
Net dimensions w/o	d/h	mm	900/218/247	1200/218/247	1500/218/247

PLATINUM NEW MODEL WITHOUT HEATER			PTN-090CX	PTN-120CX	PTN-150CX		
Voltage/frequenc	у	V~/Hz	230/50	230/50	230/50		
Motor power		W	160	200	230		
A : £1	min	m/s	9	9	9		
Air flow	max	m/s	11	11 11	11		
Air flour	min	m³/h	1300	1950	2550		
Air flow	max	m³/h	1600	2400	3150		
	min	dB	53	54	55		
Noise level	max	dB	55	56	57		
Net weight		kg	12,5	15,5	18		
Net dimensions w	v/d/h	mm	900/218/247	1200/218/247	1500/218/247		

ACCESSORIES AND CONTROLLERS

The controller dedicated exclusively for Platinum New air curtains. Basic functions: Turning ON/OFF | Fan speed | Operating mode

eco home heat pumps

A heat pump uses free air energy and uses it to heat or cool a building or to produce domestic hot water. It is a cheap, ecological and reliable source of heat, which can be used by everyone.

Thanks to modern technology, the Kaisai heat pumps operate in a very wide range of out-door temperatures and achieve high temperatures in the heating system or in domestic hot water applications. The absence of harmful emissions, safety and maintenance-free operation make Kaisai heat pumps the ideal solution for anyone who builds a house but also replaces or upgrades an existing heat source. Kaisai heat pumps are used in commercial, single- and multi-family buildings.

Split (R32) ©

Ideal alternative to gas, coal or pellet boilers

A compact design, an independent internal unit, and flexible installation make the Eco Home - Split Heat Pump (KHA+KMK) the ideal choice for owners of homes, shops, offices, and service premises. All the hydraulic components are easily accessible. The refrigerating connection between the outdoor and indoor units is resistant to freezing, even during a prolonged power failure, and an additional charge of refrigerant is only required, if the length of the refrigerant lines exceeds 15m.

space heating space cooling DHW nominal capacity rated input COP	low high low high	V/Ph/Hz °C °C °C	220÷240/1/50	KHA-10RX1 220÷240/1/50	KMK-80RX1 220÷240/1/50
space cooling DHW nominal capacity rated input	high low high	°C °C	-		
space cooling DHW nominal capacity rated input	high low high	°C °C	-		
space cooling DHW nominal capacity rated input	high low high	°C			22÷55
DHW nominal capacity rated input	low	°C		_	35÷60
DHW nominal capacity rated input	high				5÷30
nominal capacity rated input		C			
nominal capacity rated input					18÷30
rated input		°C	-	-	40÷60
		kW	8,40	10,0	-
COP		kW	1,73	2,15	-
			4,85	4,65	
maximum capaci	ty	W	8,72	9,13	-
rated input		W	2,64	2,9	-
COP			3,31	3,16	
maximum capaci	ty	W	7,97	8,39	-
rated input		W	2,84	3,07	-
COP			2,81	2,73	-
maximum capacity		W	8,35	10,2	-
rated input		W			-
EER			4,67	4,25	-
	tv	W			-
	- ,				
		• • • • • • • • • • • • • • • • • • • •			_
					-
					-
LWT at 55°C		class	A++	A++	
		dB(A)	63	65	43
		dB(A)	49,3	52,4	31,7
		mm	1075/965/395	1075/965/395	400/850/427
		mm	1120/1100/435	1120/1100/435	495/1040/495
		kg	67/79	67/79	47/53
type			twin rotary invert	twin rotary invert	
			DC brushless fan		
air flow		m³/h	5000	5000	
type			fin-coil	fin-coil	
			-		plate type
max. pump head		m	_		8,5
height difference		m	max.20	max.20	max.20
					2÷30
					R32(675)
		ka			-
					-
			_		- -
mini pipe lengil		111			
					-
heating					-
DHW		℃	-25÷43	-25÷43	-
volume		L	-	-	5
charge pressure		MPa	-	-	0,15
water side		cal	-	-	R1"
refrigerant liquid		mm	9,52	9,52	9,52
refrigerant gas		mm	15,88	15,88	15,88
5 - 0					0,3
			_		0,6
					2
etandard mounts	ıd				3
	·u	r\vV			1
		\ ('D: " :			220÷240/1/50
	rated input COP maximum capaci rated input COP maximum capaci rated input EER maximum capaci rated input EER LWT at 35°C LWT at 55°C LWT at 55°C type motor type air flow type max. pump head height difference pipe lenght type (GWP) charged volume chargment min. pipe lengh cooling heating DHW volume charge pressure water side refrigerant liquid refrigerant gas	rated input COP maximum capacity rated input COP maximum capacity rated input EER maximum capacity rated input EER LWT at 35°C LWT at 55°C LWT at 55°C type motor type air flow type max. pump head height difference pipe lenght type (GWP) charged volume chargment min. pipe lengh cooling heating DHW volume charge pressure water side refrigerant liquid refrigerant gas	rated input W COP maximum capacity W rated input W COP maximum capacity W rated input W EER maximum capacity W rated input W EER LWT at 35°C class LWT at 55°C class LWT at 55°C class LWT at 55°C mmm mm kg type motor type air flow m³/h type max. pump head m height difference m pipe lenght m type (GWP) charged volume kg chargment g/m min. pipe lengh m cooling °C heating °C heating °C DHW °C Volume L charge pressure MPa water side cal refrigerant liquid mm refrigerant gas mm MPa m³/h L standard mounted kW capacity steps	rated input COP 3,31 maximum capacity rated input W 2,84 COP 2,81 maximum capacity W 8,35 rated input W 1,79 EER 4,67 maximum capacity W 7,38 rated input W 2,44 EER 3,02 LWT at 35°C class A+++ (BB(A) 63 (BB(A) 49,3 mm 1075/965/395 mm 1120/1100/435 kg 67/79 type twin rotary invert motor type air flow type max. pump head m height difference pipe lenght type (GWP) charged volume chargement min. pipe lengh min. pi	rated input W 2,64 2,9 COP 3,31 3,16 maximum capacity W 7,97 8,39 rated input W 2,81 2,73 maximum capacity W 8,35 10,2 rated input W 1,79 2,40 EER 4,67 4,25 maximum capacity W 7,38 8,15 rated input W 2,44 2,76 EER 4,67 4,25 maximum capacity W 7,38 8,15 rated input W 2,44 2,76 EER 3,02 2,95 LWT at 35°C class A+++ A+++ LWT at 55°C class A++ A++ MB(A) 63,3 65 dB(A) 49,3 52,4 mm 1075/965/395 1075/965/395 mm 1120/1100/435 1120/1100/435 type twin rotary invert twin rotary i

monoblok •

perfect solution for houses, shops, offices and service premises

The refrigerant system is fully integrated in the outdoor unit, which means that no additional refrigerant pipes are required. The two-door design provides easy access to the internal components. The user interface provides a simple and fast modification of parameters and their monitoring in real time. The length of the communication cable of up to 50m allows for great freedom of installation.

MODEL			KHC-07RX1	KHC-09RX1	KHC-12RX3	KHC-14RX3	KHC-16RX3
Power supply		V/Ph/Hz	220÷240/1/50	220÷240/1/50	380÷415/3/50	380÷415/3/50	380÷415/3/50
	maximum capacity	kW	6,65	8,60	12,30	14,10	16,30
Heating A7W35 ΔT=5, R.H. 85%	rated input	kW	1,35	1,87	2,54	3,05	3,63
Δ1-5, R.H. 65%	COP		4,94	4,60	4,84	4,63	4,49
	maximum capacity	kW	8,05	9,22	15,85	16,89	19,49
Heating A2W35 ΔT=5, R.H. 85%	rated input	kW	1,76	2,25	3,7	4,01	4,91
	COP		4,59	4,11	4,28	4,22	3,97
	maximum capacity	kW	7,13	8,29	13,27	14,5	14,93
Heating A-7W35 ΔT=5, R.H. 85%	rated input	kW	2,29	2,68	4,47	4,82	5,13
21 0,11.11.00%	COP		3,11	3,09	2,97	2,94	2,91
	maximum capacity	kW	6,45	8,00	12,20	14,00	15,50
Cooling A35W18 ΔT=5	rated input	kW	1,39	1,92	2,53	3,11	3,63
	EER		4,65	4,16	4,83	4,50	4,27
	maximum capacity	kW	6,30	7,95	10,90	12,90	13,80
Cooling A35W7 ΔT=5	rated input	kW	2,27	3,15	3,72	4,62	5,19
1. 0	EER		2,77	2,53	2,93	2,80	2,66
Seasonal space heating	LWT at 35°C	class	A+++	A+++	A++	A++	A++
energy efficiency clas (average climate zone)	LWT at 55°C	class	A++	A++	A++	A++	A++
	LWT at 35°C		4,47	4,51	4,29	4,27	4,30
SCOP	LWT at 55°C		3,24	3,22	3,23	3,26	3,27
	LWT at 7°C		4,99	4,92	4,85	4,73	4,54
SEER	LWT at 18°C		8,58	7,88	7,50	7,16	6,78
Air flow		m³/h	3050	3050	6150	6150	6150
Sound power level		dB(A)	64	67	68	71	71
Sound pressure level (1m	n)	dB(A)	52,3	54,5	57,2	58,1	59,0
Net dimensions (w/h/d)		mm	1210/945/402	1210/945/402	1404/1414/405	1404/1414/405	1404/1414/40
Packed dimensions (w/h/o	d)	mm	1500/1140/450	1500/1140/450	1475/1580/440	1475/1580/440	1475/1580/44
Net/Gross weight	-	kg	92/111	92/111	172/193	172/193	172/193
Water piping connections dia.		cal	1"BSP	1"BSP	5/4"BSP	5/4"BSP	5/4"BSP
Safety valve set pressure		MPa	0,3	0,3	0,3	0,3	0,3
Expansion tank volume		L	2	2	5	5	5
Total water volume		L	2	2	3,2	3,2	3,2
	cooling	°C	-5÷43	-5÷43	-5÷46	-5÷46	-5÷46
Ambient	heating	°C	-25÷35	-25÷35	-25÷35	-25÷35	-25÷35
temperature range	DHW	°C	-25÷43	-25÷43	-25÷43	-25÷43	-25÷43
	cooling	°C	5÷25	5÷25	5÷25	5÷25	5÷25
LWT range	heating	°C	25÷60	25÷60	25÷60	25÷60	25÷60
· ·	DHW	℃	40÷60	40÷60	40÷60	40÷60	40÷60
	GWP type	°C	R32 (675)	R32 (675)	R32 (675)	R32 (675)	R32 (675)
Refrigerant	charged volume	kg	2,0	2,0	2,8	2,8	2,8
Type of expansion valve	5.76.900 10101110	9	electronic	electronic	electronic	electronic	electronic
.,po or expansion valve	standard mounted	kW	-	-	4,5	4,5	4,5
Backup	optional	kW	3/6/9	3/6/9	3/6/9	3/6/9	3/6/9
electric heater	υριιστιαι	L/ A A	3/0/3	31013	3/0/3	31013	31013

Split (R410A)

ideal solution for homes, shops, offices and service premises

The Kaisai Eco Home heat pump is an advanced device for both space heating and domestic hot water. In addition, it has the ability to cool the air, and a modern controller allows you to adjust the operation of the pump to the needs of the user.

MODEL	indoor units			KEH-08VER/I	KEH-10VER/I	KEH-12VER/I	KEH-14VER/I
MODEL	outdoor units	1		KEH-08VER/O	KEH-10VER/O	KEH-12VER/O	KEH-14VER/O
Electric power suppl	y		V/Ph/Hz	220÷240/1/50	220÷240/1/50	380÷415/3/50	380÷415/3/50
Maximum capacity Heating: water 30/35°C ext. temp. 7°C Cooling: water 23/18°C ext. temp.	0	heating	kW	8	10	12	14
	Capacity	cooling	kW	7,8	8,2	13,5	14,5
	Electric power input	heating	kW	1,78	2,27	2,8	3,35
		cooling	kW	1,95	2,1	3,55	3,95
35°C	COP*/EER			4,5/3,9	4,4/3,0	4,3/3,8	4,2/3,7
Maximum capacity	Capacity	heating	kW	7,60	9,50	12,00	13,50
Heating: water 40/45°C		cooling	kW	6,30	7,20	10,00	10,50
ext. temp. 7°C	Electric power input	heating	kW	2,24	2,88	3,55	4,05
Cooling: water 12/7°C ext. temp.		cooling	kW	2,33	2,77	3,35	3,60
35°C	COP*/EER			3,4/2,6	3,3/2,7	3,4/3,0	3,35/2,95
Energy class – heatir	ng			A++	A++	A+	A+
Net dimensions (w/h/d)		indoor unit	mm	500/981/324	500/981/324	500/981/324	500/981/324
		outdoor unit	mm	980/788/427	980/788/427	900/1345/412	900/1345/412
	((()	indoor unit	mm	608/1043/395	608/1043/395	608/1043/395	608/1043/395
ransport dimensions (w/h/d)		outdoor unit	mm	1097/862/477	1097/862/477	998/1515/458	998/1515/458
NI . //		indoor unit	kg	56/65	56/65	58/67	58/67
Net/transport weight		outdoor unit	kg	80/89	80/89	107/117	114/124
		indoor unit	dB(A)	31	31	58/67 107/117 31	31
Sound pressure level		outdoor unit – heating	dB(A)	56	56	57	57
		outdoor unit – cooling	dB(A)	54	54	55	55
Refrigerant pipe diameter		liquid/gas	mm	9,52/15,9	9,52/15,9	9,52/15,9	9,52/15,9
R410A refrigerant ch	narged quantity		kg	2,30	2,30	3,60	3,60
Max refrigerant insta	llation length/lev	el difference	m	30/15	30/15	30/15	30/15
Circulation pump mo	odel			Wilo RS25/7,5	Wilo RS25/7,5	Wilo RS25/7,5	Wilo RS25/7,5
Water flow rate			l/min	12	12	12	12
Auxiliary electric heater output		quantity x power	kW	6(2x3)	6(2x3)	6(1x6)	6(1×6)
Water temp. – DHW i	mode		°C	40÷80	40÷80	40÷80	40÷80
\\/-tt		heating mode	°C	25÷55	25÷55	25÷55	25÷55
Water temperature		cooling mode	°C	7÷25	7÷25	7÷25	7÷25
		heating mode	°C	-20÷35	-20÷35	-20÷35	-20÷35
Outdoor temperature	e range	domestic hot water mode	°C	-20÷45	-20÷45	-20÷45	-20÷45
		cooling mode	°C	10÷48	10÷48	10÷48	10÷48

TYPES OF CONDENSING UNITS AND CONTROL

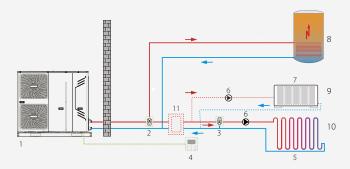
KEH-08VER/O · KEH-10VER/O

KEH-12VER/O • KEH-14VER/O

Controller

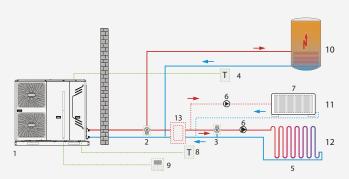
User interface (кна+кмк, кнс)

- · Multilingual menu, including Polish
- · Newly designed controller with touch buttons
- Wireless WiFi operation
- Modbus RTU protocol connect up to 16 devices, integration with BMS
- Simple and quick changing of the heat pump's operational parameters
- Checking the operating parameters in real-time
- Built-in temperature sensor
- The adjustable length of the communication cable can reach up to 50 m


WiFi as a standard

- Free application to control the pump via WiFi
- Modification of the heating temperature and usable warm water settings
- Monitoring operational parameters
- · Device failure information

Two heating circuits (standard)


- · More flexible because it has two control zones
- Separate temperature control for the underfloor and the radiator heating
- No need to purchase an extension module for a second heating system

Two control zones due to one interface

- 1. KHC / KHA+KMK
- 2. Three-way valve
- 3. Three-way valve
- 4. User interface
- 5. Underfloor heating
- 6. Water pump
- 7. Radiator
- 8. Domestic hot water tank
- 9. Zone 1 controlled base on the leaving water temperature
- 10. Zone 2 controlled base on the leaving water temperature
- 11 Buffer

Two control zones due to the user interface and the thermostat

- 1. KHC/KHA+KMK
- 2. Three-way valve
- 3. Three-way valve
- 4. Thermostat 1
- 5. Underfloor heating
- 6. Water pump
- 7 Radiator
- 8. Thermostat 2
- 9. User interface
- 10. Domestic hot water tank
- 11. Zone 1 controlled base on the thermostat 1
- 12. Zone 2 controlled base on the thermostat 2
- Buffer

Accessories for heat pumps

ELECTRIC HEATER

HP EH

The electric heater is a compact heat source, which supports or substitutes the KAISAI heat pump. Dedicated to the KHC-xxRX1 models. The KEH, KHA+KMK, and KHC-xxRX3 models have a built-in heater, as a standard.

ADDITIONAL TEMPERATURE SENSOR

HPT1

A dedicated T1/T1B temperature sensor for the KHA+KMK and KHC pumps, when using an additional heat source or an external mixing unit. KAISAI accessories, such as the "Electric Heater" and the "Mixing Unit" have built-in sensors, as a standard.

3-WAY VALVE FOR SWITCHING BETWEEN CENTRAL HEATING / DOMESTIC HOT WATER

HP 3WV

A valve switching between central heating and domestic hot water, with a high KVs coefficient, including an actuator compatible with the KAISAI heat pump. Dedicated to all models of the KAISAI heat pumps.

MIXING GROUP

HP MXS

A dedicated mixing group for the KAISAI KHA+KMK and KHC heat pumps, required for two heating circuits with different supply temperatures (e.g. radiators and an under floor heating system).

Wired controllers

WIRED CONTROLLER KJR-120X2 The controller is dedicated for duct air conditioners and optional for wall-mounted ONE, cassette, and floor / ceiling air conditioners.

Basic functions: Activation | Deactiviation | Working mode | Air temperature | Fan speed | Timer | Weekly timer | Operation temperature range.

CENTRAL CCM03

Optional controller for air conditioners: cassette, floor / ceiling and duct air conditioners.

Possibility to control up to 64 units. In addition to the standard functions, it has locking options for: operating mode, individual controllers and central control buttons. The maximum length of communication cables is 1200 m.

WIRFD CONTROLLER KJR12B

The controller is dedicated for duct air conditioners and optional for cassette and floor / ceiling air conditioners.

Basic functions: Turning ON/OFF | Operating mode | Air temperature | Fan speed | Timer | Temp. sensor in remote control unit Auto louver function

WIRED CONTROLLER KJR90A

Optional controller for: cassette, wall, floor / ceiling, duct devices.

Basic functions: Turning ON/OFF| Operating mode | Air temperature | Fan speed | Timer | Auto louver function | Clock

Wireless controllers

RG66A1, RG66A2, RG66B7 WIRELESS CONTROL UNIT

This controller is dedicated to wall-mounted, floor, cassette, and floor/ceiling air conditioners.

Basic functions: Activation / Deactivation | Working mode | Air temperature | Fan speed | Timer | Remote control temperature sensor | Automatic louvre function | Direction of air supply | Turbo function | Self-cleaning evaporator | 8st.C continuous heating function | Eco function*

*Each individual function of the remote control depends on the version. Refer to the remote control manual for details.

WIRELESS CONTROL UNIT **RG57**

The controller is dedicated for wall, cassette, floor / ceiling air conditioners and optional for duct units.

Basic functions: Turning ON/OFF| Operating mode | Air temperature | Fan speed | Timer | Temp. sensor in remote control unit | Auto louver function | Direction of air flow | Turbo function | Self-cleaning evaporator | 8°C continuous heating function

WIRELESS CONTROL UNIT RG66A1(B2)

The controller is dedicated for floor air conditioners. Basic functions:

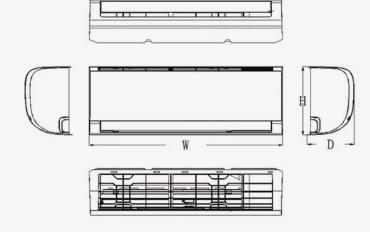
Activation | Deactiviation | Working mode | Air temperature | Fan speed | Timer | Remote control temperature sensor | Automatic louvre function | Direction of air supply | Turbo function.

WIRELESS CONTROL UNIT **R51**

The controller dedicated for KPPD portable air conditioners and optional for wall, cassette, floor / ceiling air conditioners.

Basic functions: Turning ON/OFF| Operating mode| Air temperature | Fan speed | Timer | Direction of air flow | Auto louver function | Turbo function

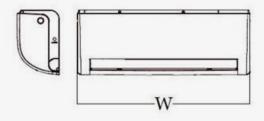
WIRFLESS CONTROL UNIT YX1F

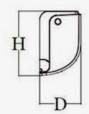

Controller dedicated exclusively for KPC portable air conditioners.

Basic functions: Turning ON/OFF| Operating mode | Air temperature | Fan speed | Timer | Auto louver function | Turbo function

Dimensions of Split units

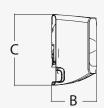
WALL-MOUNTED FLY


MODEL	DIMENSIONS [mm]						
	W	D	Н				
KWX-09HRBI	805	194	285				
KWX-12HRBI	805	194	285				
KWX-18HRBI	957	213	302				
KWX-24HRBI	1040	220	327				

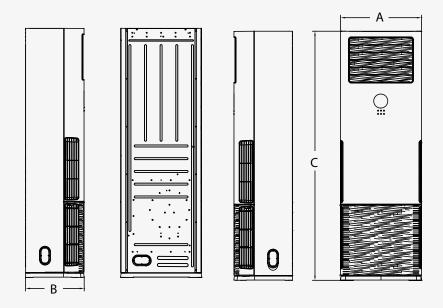


WALL-MOUNTED ONE

MODEL	DIMENSIONS [mm]						
	w	D	Н				
KRX-09AEXI	717	193	302				
KRX-12AEXI	805	193	302				
KRX-18AEXI	964	222	325				
KRX-24AEXI	1106	232	342				

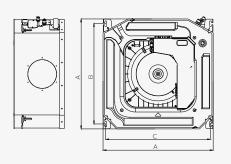


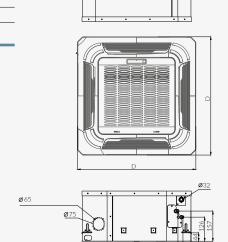
WALL-MOUNTED PRO+


MODEL	DIMENSIONS [mm]					
	A	В	С			
KSN-12PRBI	802	189	297			

FLOOR STANDING

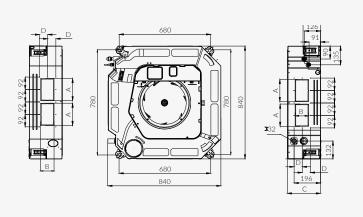
MODEL	DIMENSIONS [mm]					
	A B C					
KFS-50HRFI	629	456	1935			

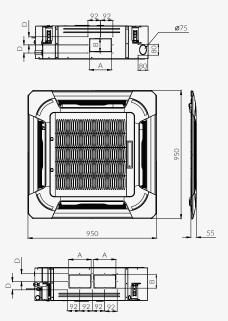


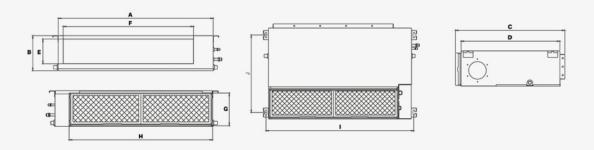

FLOOR/CEILING

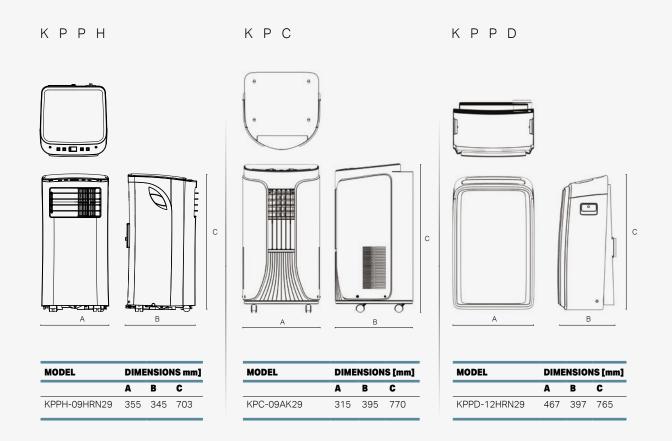
COMPACT CASSETTE

	DIMENSIONS [mm]							
4	В	С	D	E	Н			
570	523	545	647	50	260			
570	523	545	647	50	260			
5								


2-**ø**150 2-**ø**170

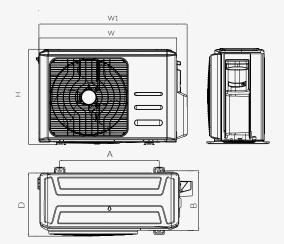



MODEL	DIMENSIONS [mm]						
	A	В	С	D			
KCD-24HRB32	160	95	245	60			
KCD-36HRB32	160	95	245	60			
KCD-48HRB32	160	95	287	60			
KCD-55HRB32	160	95	287	60			



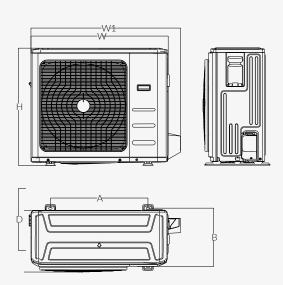
SLIM DUCT

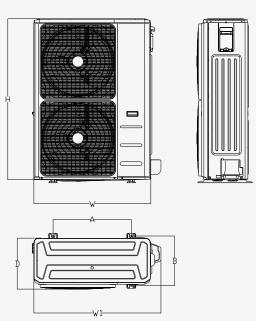
MODEL	DIMENS	DIMENSIONS [mm]								
	A	В	С	D	E	F	G	Н	ı	J
KTI-18HWB32X	880	210	674	600	136	706	190	782	920	508
KTI-24HWB32	1100	249	774	700	175	926	228	1001	1140	598
KTI-36HWB32	1360	249	774	700	175	1186	228	1261	1400	598
KTI-48HWB32, KTI-55HWB32	1200	300	874	800	227	1044	280	1101	1240	697


Dimensions of Portable units

OUTDOOR UNITS

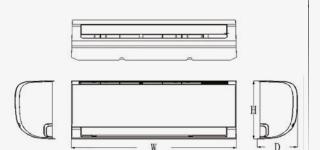
FOR WALL-MOUNTED MODELS


MODEL	DIMENSIONS [mm]								
	W	D	Н	W1	A	В			
KWX-09HRBO	720	245	495	885	452	256			
KWX-12HRBO	720	245	495	885	452	256			
KWX-18HRBO	800	365	554	870	514	340			
KWX-24HRBO	800	333	554	914	540	350			
KSN-12PRBO	800	333	554						
KRX-09AEXO	770	300	555						
KRX-12AEXO	770	300	555						
KRX-18AEXO	800	333	554						
KRX-24AEXO	845	363	702						

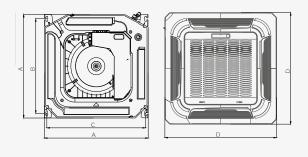

FOR CASSETTE MODELS, FLOOR STANDING MODELS, FLOOR AND CEILING MODELS, DUCT MODELS

MODEL	DIMENSIONS [mm]						
	w	D	Н	W1	A	В	
KOB30-12HFN32X	800	333	554	870	514	340	
KOB30-18HFN32X	800	333	554	870	514	340	
KOCA30U-24HFN32	845	363	702	914	540	350	
KOD30U-36HFN32, 36HFJ32	946	410	810	1030	673	403	
KOE30U-48HFN32	952	415	1333	1045	634	404	
KOE30U-55HFN32	952	415	1333	1045	634	404	

KOB30-12 | 18 HFN32X · KOCA30U-24HFN32 KOD30U-36HFN32 · KOD30U-36HFJ32


KOE30U-48 | 55 HFN32 · KFS-50HRFO

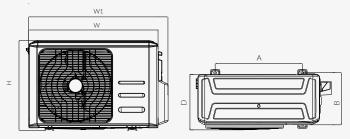
Dimensions of Multi Split units


WALL-MOUNTED

MODEL	DIMENSIONS [mm]						
	W D H						
KWX-09HRBI	805	194	285				
KWX-12HRBI	805	194	285				
KWX-18HRBI	957	213	302				
KWX-24HRBI	1040	220	327				

CASSETTE

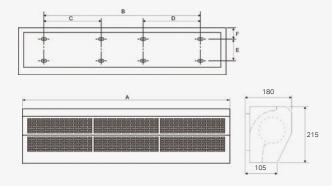
MODEL	DIMENSIONS [mm]							
	A	В	С	D	E	F		
KCA3I-09HRB32	570	523	545	647	50	260		
KCA3U-12HRB32X	570	523	545	647	50	260		
KCA3U-18HRB32X	570	523	545	647	50	260		



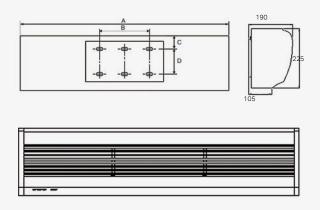
DUCT

MODEL	DIME	NSIO	NS [mr	n]								- 2	ы В
	A	В	С	D	E	F	G	н	ı	J		q	Þ
KTI-18HWB32X	880	210	674	600	136	706	190	782	920	508	7		
а: 			3	ВЕ			A F			1 r	n m		

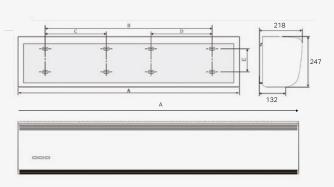
OUTDOOR UNITS


MODEL	DIMENSIONS [mm]								
	W	D	Н	W1	A	В			
K20C-18HFN32	800	333	554	860	514	340			
K30E-27HFN32	845	363	702	923	540	350			
K40E-28HFN32	946	410	810	1034	673	403			
K40B-36HFN32	946	410	810	1034	673	403			
K50D-42HFN32	946	410	810	1034	673	403			

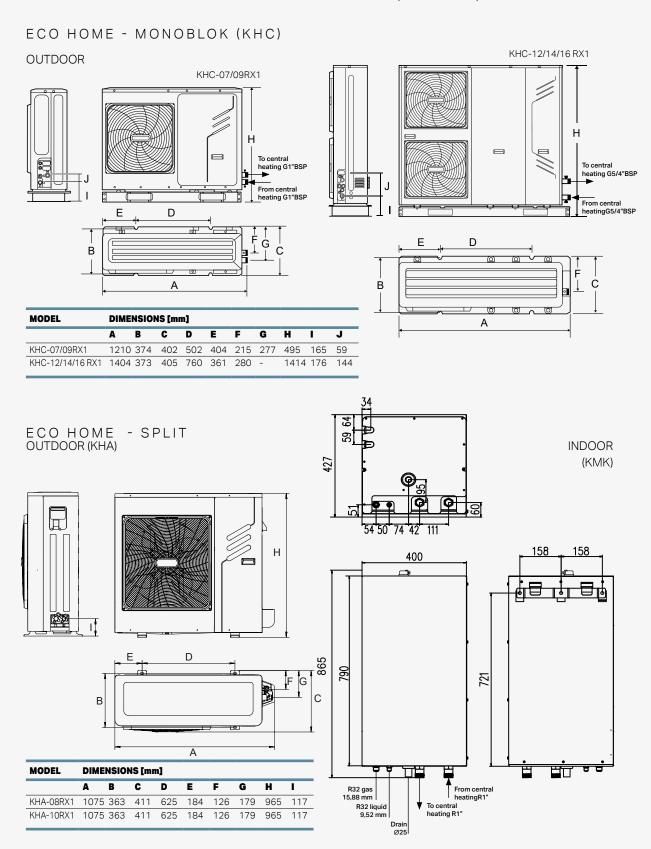
Dimensions of Air curtains


SILVER

MODEL	DIMENSIONS [mm]							
	A	В	С	D	F	E		
WITH HEATER								
SILVER AG-100H6	1000	950	340	340	50	100		
SILVER AG-150H10	1500	1408	569	569	50	100		
SILVER AG-200H14	2000	1904	847	847	50	100		
WITHOUT HEATER								
SILVER AG-100CX	1000	440	-	_	50	90		
SILVER AG-150CX	1500	840	-	-	50	90		
SILVER AG-200CX	2000	840	-	-	50	90		

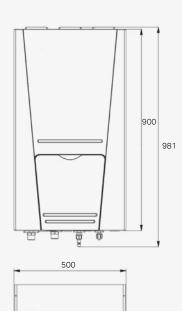

GOLD

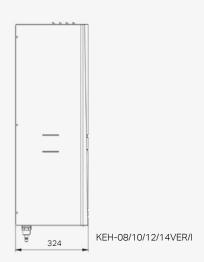
MODEL	DIMENSIONS [mm]						
	Α	В	С	D			
WITH HEATER							
GOLD AU-100H3.5	1000	440	42	90			
GOLD AU-100H6	1000	440	42	90			
GOLD AU-120H8	1200	440	42	90			
GOLD AU-150H10	1500	840	42	90			
GOLD AU-200H14	2000	840	42	90			
WITHOUT HEATER							
GOLD AU-100CX	1000	440	42	90			
GOLD AU-150CX	1500	840	42	90			
GOLD AU-200CX	2000	840	42	90			



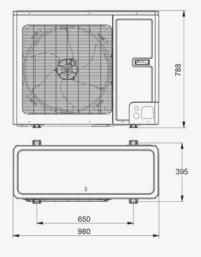
PLATINUM NEW

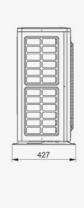
MODEL	DIMENSIONS [mm]						
	A	В	С	D	E		
WITH HEATER							
PLATINUM NEW PTN-090H8	900	440	_	-	90		
PLATINUM NEW PTN-120H10	1200	440	_	_	90		
PLATINUM NEW PTN-150H12	1500	440	_	_	90		
WITHOUT HEATER							
PLATINUM NEW PTN-090CX	900	440	-	-	90		
PLATINUM NEW PTN-120CX	1200	440	-	-	90		
PLATINUM NEW PTN-150CX	1500	440	-	-	90		

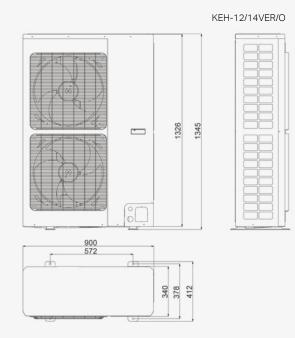



Dimensions of Heat pumps R32

Dimensions of Heat pumps R410A


ECO HOME - SPLIT INDOOR





ECO HOME - SPLIT OUTDOOR

KEH-08/10VER/O

Pallet arrangement-logistic data

Indoor unit	Outdoor unit	Number of assemblies	Pallet size	Indoor unit	Outdoor unit	Number of assemblies	Pallet size
KWX-09HRBI	KWX-09HRBO	6	120x90x200	KTI-18HWB32X	KOB30-18HFN32X	3	120x90x175
KWX-12HRBI	KWX-12HRBO	6	120x90x200	KTI-24HWB32	KOCA30U-24HFN32	2 2	120x100x170
KWX-18HRBI	KWX-18HRBO	5	120x90x200	LITE ON NATION	KOD30U-36HFN32/		
KWX-24HRBI	KWX-24HRBO	4	120x90x200	KTI-36HWB32	HFJ32	1	120x90x175
KRX-09AEXI	KRX-09AEXO	6	120x90x200	KTI-48HWB32	KOE30U-48HFN32	1	120x90x165
KRX-12AEXI	KRX-12AEXO	6	120x90x200	KTI-55HWB32	KOE30U-55HFN32	1	120x90x165
KRX-18AEXI	KRX-18AEXO	5	120x90x205	KPC-09AK29		8	120x80x180
KRX-24AEXI	KRX-24AEXO	4	120x90x200	KPPD-12HRN29		8	120x90x180
KSN-12PRBI	KSB-12PRBO	6	120x90x200	KPPH-09HRN29		12	120x80x190
KWX-09HRDI		20	120x90x200	SILVER AG-100H6	 3	21	120x80x200
KWX-12HRDI		20	120x90x200	SILVER AG-150H	10	21	200x80x200
KWX-18HRDI		15	120x90x200	SILVER AG-200H ²	14	21	200x80x200
KWX-24HRDI		12	120x80x200	SILVER AG-100C	<	21	120x80x200
KCA3I-09HRF32		5	120x80x200	SILVER AG-150CX	<	21	200x80x200
KCA3U-12HRF32X		5	120x80x200	SILVER AG-200CX	<	18	200x80x200
KCA3U-18HRF32X		5	120x80x200	GOLD AU-100H3,	5	18	120x80x200
	K20C-18HFN32	9	120x90x200	GOLD AU-100H6		18	120x80x200
	K30E-27HFN32	6	120x90x165	GOLD AU-120H8		18	120x80x200
	K40E-28HFN32			GOLD AU-150H10	 D	18	200x80x200
	K40B-36HFN32	4	120x100x190	GOLD AU-200H14	4	18	200x80x200
	K50D-42HFN32	4	120x100x190	GOLD AU-100CX		18	120x80x200
				GOLD AU-150CX		18	200x80x200
		1+1 2+2	210x80x130, 120x80x160, 210x80x130, 120x100x160	GOLD AU-200CX		18	200x80x200
KFS-50HRFI	KFS-50HRFO			PLATINUM NEW P	PTN-090H8	14	120x80x180
				PLATINUM NEW F	14	120x80x180	
KUE-18HRB32X	KOB30-18HFN32X	3	120x90x175	PLATINUM NEW F	PTN-150H12	14	200x80x180
KUE-24HRB32	KOCA30U-24HFN32	3	120x90x175	PLATINUM NEW P	PTN-090CX	14	120x80x180
	KOD30U-36HFN32/			PLATINUM NEW P	PTN-120CX	14	120x80x180
KUE-36HRB32	HFJ32	1	120x90x190	PLATINUM NEW P	PTN-150CX	14	200x80x180
KUE-48HRB32	KOE30U-48HFN32	1	120x90x190	KEH-08VER/I	KEH-08VER/O	2	120x100x185
KUE-55HRB32	KOE30U-55HFN32	1	120x90x190	KEH-10VER/I	KEH-10VER/O	2	120x100x185
KCA3U-12HRB32X	KOB30-12HFN32X	3	120x90x185	KEH-12VER/I	KEH-12VER/O	1	120x90x160
KCA3U-18HRB32X	KOB30-18HFN32X	3	120x90x185	KEH-14VER/I	KEH-14VER/O	1	120x90x170
KCD-24HRB32	KOCA30U-24HFN32	2 3	120x100x195		KHC-07RX1	2	130x90x125
KCD-36HRB32	KOD30U-36HFN32/	2	120x100x160		KHC-09RX1	2	130x90x125
KOD 4011DD00	HFJ32	1	100,000,105		KHC-12RX3	2	160x90x170
KCD-48HRB32 KCD-55HRB32	KOE30U-48HFN32 KOE30U-55HFN32	1	120x90x165 120x90x165		KHC-14RX3 KHC-16RX3	2	160x90x170 160x90x170
NCD-SSHRBS2	NOLSUU-SSHFN32	1	12008000100	KMK-80RX1	KHA-08RX1	2	120x100x180
				KMK-80RX1	KHA-10RX1	2	120x100x180

HEAT PUMPS

HEAT RECOVERY UNITS

PHOTOVOLTAIC MODULES AND INVERTERS

Full range of products based on renewable energy sources available on our website

Contact details

For Consumers:

Are you interested in buying our products?

Check the current list of Distributors in Poland at: www.kaisai.com

For Distributors and Installers:

HEADQUARTERS

ul. Ostrobramska 101A 04-041 Warsaw 22 517 36 00 | 22 879 99 07

SALES DEPARTMENT

22 465 65 85 handlowy@kaisai.com

Do you want to become our Distributor? Write or call us.

Klima-Therm Group Academy:

GDAŃSK BRANCH

ul. Budowlanych 48 80-298 Gdańsk 58 768 03 33

WARSAW BRANCH

ul. Ostrobramska 101A 04-041 Warsaw 22 517 36 00

KATOWICE BRANCH

ul. Chorzowska 108, Budynek B 40-101 Katowice 32 209 49 26

Do you want to obtain an authorisation certificate and become our Installer?

Contact us: handlowy@kaisai.com

The purpose of this document is to provide information and present heat pumps of the Kaisai brand. I Since the technologically advanced production process necessitates its continuous control and improvement, the information contained in this publication may be subject to change. The technical data and prices included in the publication www.kaisai.com

kaisai.com